A191276 Numbers that are congruent to {0, 1, 4, 5, 7, 9, 11} mod 12.
0, 1, 4, 5, 7, 8, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 28, 29, 31, 32, 35, 36, 37, 40, 41, 43, 44, 47, 48, 49, 52, 53, 55, 56, 59, 60, 61, 64, 65, 67, 68, 71, 72, 73, 76, 77, 79, 80, 83, 84, 85, 88, 89, 91, 92, 95, 96, 97, 100, 101, 103, 104, 107, 108, 109, 112, 113, 115, 116, 119, 120, 121, 124, 125, 127, 128, 131, 132, 133, 136, 137, 139, 140, 143, 144, 145, 148, 149, 151, 152, 155, 156, 157, 160, 161, 163, 164, 167, 168, 169, 172, 173, 175, 176, 179, 180, 181
Offset: 1
Links
- Wikipedia, Arabic scale
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
Cf. A190785.
Programs
-
Mathematica
LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,4,5,7,8,11,12},120] (* Harvey P. Dale, Mar 24 2019 *)
-
PARI
concat(0,Vec((1+x+x^2)*(1+2*x-2*x^2+2*x^3+x^4)/(1-x)^2/(1+x+x^2+x^3+x^4+x^5+x^6)+O(x^99))) \\ Charles R Greathouse IV, Mar 11 2012
Formula
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8.
G.f.: x^2*(1 + x + x^2)*(1 + 2x - 2x^2 + 2x^3 + x^4)/((1-x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)). - Colin Barker, Mar 11 2012
Comments