cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191296 Least k such that k-1 and k+1 in binary representation have same number n of 0's as 1's.

Original entry on oeis.org

11, 36, 140, 540, 2108, 8316, 33020, 131580, 525308, 2099196, 8392700, 33562620, 134234108, 536903676, 2147549180, 8590065660, 34360000508, 137439477756, 549756862460, 2199025352700, 8796097216508, 35184380477436, 140737505132540, 562949986975740, 2251799880794108, 9007199388958716, 36028797287399420
Offset: 2

Views

Author

Juri-Stepan Gerasimov, May 29 2011

Keywords

Crossrefs

Cf. A031443 (digitally balanced numbers), A191292, A191341.

Programs

  • Mathematica
    Join[{11},LinearRecurrence[{7,-14,8},{36,140,540},40]] (* Harvey P. Dale, Jun 10 2011 *)
  • PARI
    a(n)=if(n<3,11,2*(2^(n-1) + 2)*(2^(n-1) - 1)) \\ Charles R Greathouse IV, Jun 01 2011
    
  • PARI
    Vec(x^2*(11 - 41*x + 42*x^2 - 24*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^40)) \\ Colin Barker, Jan 26 2018

Formula

a(n) = 2*(2^(n-1) + 2)*(2^(n-1) - 1) for n>=3. - Nathaniel Johnston, May 30 2011
a(0)=11, a(1)=36, a(2)=140, a(3)=540, a(n)=7*a(n-1)-14*a(n-2)+8*a(n-3). - Harvey P. Dale, Jun 10 2011
G.f.: x^2*(11 - 41*x + 42*x^2 - 24*x^3) / ((1 - x)*(1 - 2*x)*(1 - 4*x)). - Colin Barker, Jan 26 2018

Extensions

a(11)-a(27) and recurrence from Charles R Greathouse IV, May 29 2011