A191302 Denominators in triangle that leads to the Bernoulli numbers.
1, 2, 2, 3, 2, 2, 2, 3, 15, 2, 6, 3, 2, 1, 5, 105, 2, 6, 15, 15, 2, 3, 3, 105, 105, 2, 2, 5, 7, 35, 2, 3, 3, 21, 21, 231, 2, 6, 15, 15, 21, 21, 2, 1, 5, 15, 1, 77, 15015, 2, 6, 3, 35, 15, 33, 1155
Offset: 0
Examples
The first few rows of the array ASPEC array: 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 2, 5, 9, 14, 20, 27, 35, 2, 7, 16, 30, 50, 77, 112, 2, 9, 25, 55, 105, 182, 294, The first few T(n,n+1) = T(n,n)/2 coefficients: 1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ... The first few rows of the SBD array: 1/2, 0, 0, 0 1/2, 0, 0, 0 1/2, -1/6, 0, 0 1/2, -1/6, 0, 0 1/2, -1/6, 1/15, 0 1/2, -1/6, 1/15, 0 1/2, -1/6, 1/15, -4/105 1/2, -1/6, 1/15, -4/105 The first few rows of the BSPEC triangle: B(0) = 1 = 1/1 B(1) = 1/2 = 1/2 B(2) = 1/6 = 1/2 - 1/3 B(3) = 0 = 1/2 - 1/2 B(4) = -1/30 = 1/2 - 2/3 + 2/15 B(5) = 0 = 1/2 - 5/6 + 1/3 B(6) = 1/42 = 1/2 - 1/1 + 3/5 - 8/105 B(7) = 0 = 1/2 - 7/6 + 14/15 - 4/15
Crossrefs
Programs
-
Maple
nmax:=13: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od: seq(T(n,n+1),n=0..nmax): for n from 0 to nmax do ASPEC(n,0):=2: for m from 1 to mmax do ASPEC(n,m):= (2*n+m)*binomial(n+m-1,m-1)/m od: od: for n from 0 to nmax do seq(ASPEC(n,m),m=0..mmax) od: for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n,m):=0 od: od: for m from 0 to mmax do for n from 2*m to nmax do SBD(n,m):= T(m,m+1) od: od: for n from 0 to nmax do seq(SBD(n,m), m= 0..mmax/2) od: for n from 0 to nmax do BSPEC(n,2) := SBD(n,2)*ASPEC(2,n-4) od: for m from 0 to mmax do for n from 0 to nmax do BSPEC(n,m) := SBD(n,m)*ASPEC(m,n-2*m) od: od: for n from 0 to nmax do seq(BSPEC(n,m), m=0..mmax/2) od: seq(add(BSPEC(n, k), k=0..floor(n/2)) ,n=0..nmax): Tx:=0: for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n,m)): Tx:=Tx+1: od: od: seq(a(n),n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
-
Mathematica
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
Formula
ASPEC(n, 0) = 2 and ASPEC(n, m) = (2*n+m)*binomial(n+m-1, m-1)/m, n >= 0, m >= 1.
ASPEC(n, m) = ASPEC(n-1, m) + ASPEC(n, m-1), n >= 1, m >= 1, with ASPEC(n, 0) = 2, n >= 0, and ASPEC(0,m) = 1, m >= 1.
SBD(n, m) = T(m, m+1), n >= 2*m; see A190339 for the definition of the T(n, m).
BSPEC(n, m) = SBD(n, m)*ASPEC(m, n-2*m)
Extensions
Edited, Maple program and crossrefs added by Johannes W. Meijer, Jul 02 2011
Comments