cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191309 Number of peaks at height >= 2 in all dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 16, 47, 94, 244, 488, 1186, 2372, 5536, 11072, 25147, 50294, 112028, 224056, 491870, 983740, 2135440, 4270880, 9188406, 18376812, 39249768, 78499536, 166656772, 333313544, 704069248, 1408138496, 2961699667, 5923399334, 12412521388, 24825042776
Offset: 0

Views

Author

Emeric Deutsch, May 30 2011

Keywords

Comments

Also number of valleys (i.e., DU's) in all dispersed Dyck paths of length n. Example: a(4)=1 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+0+0+0+1+0 = 1 valley.
Also number of doublerises (i.e., UU's) in all dispersed Dyck paths of length n. Example: a(4)=1 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+0+0+0+0+1 = 1 doublerise.

Examples

			a(4)=1 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have 0+0+0+0+0+1 =1 peak at height >=2.
		

Crossrefs

Programs

  • Maple
    q := sqrt(1-4*z^2): g := 2*z^2*(1-q)/(q*(1-2*z+q)^2): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
  • Mathematica
    CoefficientList[Series[2*x^2*(1-Sqrt[1-4*x^2])/(Sqrt[1-4*x^2]*(1-2*x+ Sqrt[1-4*x^2])^2), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)
  • PARI
    x='x+O('x^50); concat([0,0,0,0], Vec(2*x^2*(1-sqrt(1-4*x^2))/(sqrt(1-4*x^2)*(1-2*x+ sqrt(1-4*x^2))^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(2*n+1) = 2*a(2*n).
a(2*n+4) = A029760(n).
G.f.: g = 2*z^2*(1-q)/(q*(1-2*z+q)^2), where q=sqrt(1-4*z^2).
a(n) ~ 2^(n-3/2)*sqrt(n)/sqrt(Pi) * (1-sqrt(2*Pi/n)). - Vaclav Kotesovec, Mar 20 2014
Conjecture: n*(n-4)*a(n) +(n^2-10*n+15)*a(n-1) +2*(-5*n^2+28*n-27)*a(n-2) -4*(n-3)*(n-8) *a(n-3) +24*(n-3)*(n-4)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
Showing 1-1 of 1 results.