A191314 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n and height k.
1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 12, 6, 1, 1, 20, 12, 2, 1, 33, 27, 8, 1, 1, 54, 53, 16, 2, 1, 88, 108, 44, 10, 1, 1, 143, 208, 88, 20, 2, 1, 232, 405, 208, 65, 12, 1, 1, 376, 768, 415, 130, 24, 2, 1, 609, 1459, 908, 350, 90, 14, 1, 1, 986, 2734, 1804, 700, 180, 28, 2, 1, 1596, 5117, 3776, 1700, 544, 119, 16, 1
Offset: 0
Examples
T(5,2) = 2 because we have HUUDD and UUDDH, where U=(1,1), D=(1,-1), H=(1,0). Triangle starts: 1; 1; 1, 1; 1, 2; 1, 4, 1; 1, 7, 2; 1, 12, 6, 1; 1, 20, 12, 2; 1, 33, 27, 8, 1;
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Programs
-
Maple
F[0] := 1: F[1] := 1-z: for k from 2 to 12 do F[k] := sort(expand(F[k-1]-z^2*F[k-2])) end do: for k from 0 to 11 do h[k] := z^(2*k)/(F[k]*F[k+1]) end do: T := proc (n, k) options operator, arrow: coeff(series(h[k], z = 0, 20), z, n) end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form # second Maple program: b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1, (p->add(coeff(p, z, i)*z^max(i, y), i=0..degree(p,z))) (b(x-1, y-1))+ b(x-1, y+1)+`if`(y=0, b(x-1, y), 0))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)): seq(T(n), n=0..14); # Alois P. Heinz, Mar 12 2014
-
Mathematica
b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x==0, 1, Function [{p}, Sum[ Coefficient[p, z, i]*z^Max[i, y], {i, 0, Exponent[p, z]}]][b[x-1, y-1]] + b[x-1, y+1] + If[y==0, b[x-1, y], 0]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)
Formula
G.f.: The g.f. of column k is z^{2k}/(F[k]*F[k+1]), where F[k] are polynomials in z defined by F[0]=1, F[1]=1-z, F[k]=F[k-1]-z^2*F[k-2] for k>=2. The coefficients of these polynomials form the triangle A108299.
Rows may be obtained by taking finite differences of A205573 columns from the top -> down. - Gary W. Adamson, Feb 01 2012
Comments