cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191314 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths (i.e., Motzkin paths with no (1,0) steps at positive heights) of length n and height k.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 7, 2, 1, 12, 6, 1, 1, 20, 12, 2, 1, 33, 27, 8, 1, 1, 54, 53, 16, 2, 1, 88, 108, 44, 10, 1, 1, 143, 208, 88, 20, 2, 1, 232, 405, 208, 65, 12, 1, 1, 376, 768, 415, 130, 24, 2, 1, 609, 1459, 908, 350, 90, 14, 1, 1, 986, 2734, 1804, 700, 180, 28, 2, 1, 1596, 5117, 3776, 1700, 544, 119, 16, 1
Offset: 0

Views

Author

Emeric Deutsch, May 31 2011

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,1) = A000071(n+1) (Fibonacci numbers minus 1).
Sum_{k>=0} k * T(n,k) = A191315(n).
Extracting the even numbered rows, we obtain triangle A205946 with row sums A000984. The odd numbered rows yield triangle A205945 with row sums A001700. - Gary W. Adamson, Feb 01 2012

Examples

			T(5,2) = 2 because we have HUUDD and UUDDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
1;
1;
1,  1;
1,  2;
1,  4,  1;
1,  7,  2;
1, 12,  6, 1;
1, 20, 12, 2;
1, 33, 27, 8, 1;
		

Crossrefs

Programs

  • Maple
    F[0] := 1: F[1] := 1-z: for k from 2 to 12 do F[k] := sort(expand(F[k-1]-z^2*F[k-2])) end do: for k from 0 to 11 do h[k] := z^(2*k)/(F[k]*F[k+1]) end do: T := proc (n, k) options operator, arrow: coeff(series(h[k], z = 0, 20), z, n) end proc: for n from 0 to 16 do seq(T(n, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(x, y) option remember; `if`(y>x or y<0, 0, `if`(x=0, 1,
          (p->add(coeff(p, z, i)*z^max(i, y), i=0..degree(p,z)))
          (b(x-1, y-1))+ b(x-1, y+1)+`if`(y=0, b(x-1, y), 0)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Mar 12 2014
  • Mathematica
    b[x_, y_] := b[x, y] = If[y>x || y<0, 0, If[x==0, 1, Function [{p}, Sum[ Coefficient[p, z, i]*z^Max[i, y], {i, 0, Exponent[p, z]}]][b[x-1, y-1]] + b[x-1, y+1] + If[y==0, b[x-1, y], 0]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 31 2015, after Alois P. Heinz *)

Formula

G.f.: The g.f. of column k is z^{2k}/(F[k]*F[k+1]), where F[k] are polynomials in z defined by F[0]=1, F[1]=1-z, F[k]=F[k-1]-z^2*F[k-2] for k>=2. The coefficients of these polynomials form the triangle A108299.
Rows may be obtained by taking finite differences of A205573 columns from the top -> down. - Gary W. Adamson, Feb 01 2012