A191373 Sum of binomial coefficients C(i+j,i) modulo 2 over all pairs (i,j) of positive integers satisfying 5i+j=n.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 3, 1, 2, 2, 4, 1, 2, 2, 4, 2, 3, 3, 5, 1, 3, 2, 5, 2, 3, 4, 6, 1, 3, 2, 6, 2, 3, 4, 6, 2, 4, 3, 7, 3, 5, 5, 8, 1, 4, 3, 8, 2, 3, 5, 8, 2, 4, 3, 8, 4, 6, 6, 9, 1, 5, 3, 9, 2, 3, 6, 9, 2, 4, 3, 9
Offset: 0
Keywords
Links
- Sam Northshield, Sums across Pascal's triangle modulo 2, Congressus Numerantium, 200, pp. 35-52, 2010.
Crossrefs
Programs
Formula
a(2*n) = a(n) and a(2*n+1) = a(n) + a(n-2) with a(0) = 1, a(1) = 1 and a(n)=0 for n<=-1.
a(n) = Le1{1,5}(n) = add(T(n-4*k,k),k=0..floor(n/5))
a(n) = Le1{1,5}(n) = sum(binomial(i + j, i) mod 2 | (i + 5*j) = n)
a(n) = Le2{5,1}(n) = add(T(n-4*k,n-5*k),k=0..floor(n/5))
a(n) = Le2{5,1}(n) = sum(binomial(i + j, i) mod 2 | (5*i + j) = n)
G.f.: Product_{n>=0} (1+x^(2^n)+x^(5*2^n)).
G.f. A(x) satisfies: A(x) = (1 + x + x^5) * A(x^2). - Ilya Gutkovskiy, Jul 09 2019
Comments