cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A191384 Triangle read by rows: T(n,k) is the number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) with k ascents of length 1. An ascent is a maximal sequence of consecutive (1,1)-steps.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 1, 3, 4, 3, 5, 8, 6, 1, 7, 14, 10, 4, 12, 26, 21, 10, 1, 18, 42, 41, 20, 5, 31, 77, 83, 45, 15, 1, 47, 128, 150, 96, 35, 6, 81, 234, 293, 209, 85, 21, 1, 125, 388, 530, 414, 196, 56, 7, 216, 704, 1023, 858, 455, 147, 28, 1, 337, 1172, 1828, 1668, 974, 364, 84, 8, 583, 2119, 3479, 3385, 2133, 896, 238, 36, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 01 2011

Keywords

Comments

Row n has 1 + floor(n/2) entries.
Sum of entries in row n is binomial(n, floor(n/2)) = A001405(n).
T(n,0) = A191385(n).
Sum_{k>=0} k*T(n,k) = A191386(n).

Examples

			T(5,2)=3 because we have HUDUD, UDHUD, and UDUDH, where U=(1,1), D=(1,-1), H=(1,0).
Triangle starts:
  1;
  1;
  1,  1;
  1,  2;
  2,  3,  1;
  3,  4,  3;
  5,  8,  6,  1;
  7, 14, 10,  4;
		

Crossrefs

Programs

  • Maple
    G := ((t*z^2-(1-z)^2+sqrt((1+z^2-t*z^2)*(1-3*z^2-t*z^2)))*1/2)/(z*(1-2*z+z^2-z^3-t*z^2+t*z^3)): Gser := simplify(series(G, z = 0, 19)): for n from 0 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 16 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = (t*z^2 - (1-z)^2 + sqrt((1+z^2-t*z^2)*(1-3*z^2-t*z^2)))/(2*z*(1-2*z+z^2-z^3-t*z^2+t*z^3)).

A302483 Number of FF-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths.

Original entry on oeis.org

1, 1, 2, 2, 5, 9, 17, 32, 59, 107, 192, 342, 606, 1070, 1885, 3316, 5828, 10237, 17975, 31555, 55387, 97210, 170605, 299405, 525434, 922088, 1618168, 2839704, 4983351, 8745190, 15346758, 26931703, 47261865, 82938813, 145547493, 255418068, 448227487, 786584431
Offset: 0

Views

Author

Sergey Kirgizov, Apr 08 2018

Keywords

Comments

Number of FF-equivalence classes of Łukasiewicz paths. A Łukasiewicz path of length n is a lattice path from (0,0) to (n,0) using up steps U_{k} = (1,k) for any positive integer k, flat steps F = (1,0) and down steps D = (1,-1). Łukasiewicz paths are alpha-equivalent whenever the positions of occurrences of pattern alpha are identical on these paths.

Examples

			There are 14 Łukasiewicz of length 4 divided in the 5 following FF-equivalence classes: {FFFF}, {FFU_{1}D}, {U_{1}DFF}, {U_{1}FFD}, {FU_{1}DF, FU_{1}FD, FU_{2}DD, U_{1}DU_{1}D, U_{1}FDF, U_{1}U_{1}DD, U_{2}DDF, U_{2}DFD, U_{2}FDD, U_{3}DDD}.
		

Crossrefs

Cf. A001405, A191385, A000045, A005251, A000325, A011782, A001006, A023431, A292460, A004148 enumerates the numbers of P-equivalence classes of Łukasiewicz paths for other values of P.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3 x + 4 x^2 - 5 x^3 + 7 x^4 - 7 x^5 + 6 x^6 - 3 x^7 + x^8)/((1 - 2 x + x^2 - x^3) (1 - x)^2), {x, 0, 32}], x] (* Michael De Vlieger, Apr 12 2018 *)
  • PARI
    x='x+O('x^99); Vec((1-3*x+4*x^2-5*x^3+7*x^4-7*x^5+6*x^6-3*x^7+x^8)/((1-2*x+x^2-x^3)*(1-x)^2)) \\ Altug Alkan, Apr 12 2018

Formula

G.f.: (1 - 3*x + 4*x^2 - 5*x^3 + 7*x^4 - 7*x^5 + 6*x^6 - 3*x^7 + x^8) / ((1-2*x+x^2-x^3) * (1-x)^2).
Showing 1-2 of 2 results.