cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191386 Number of ascents of length 1 in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0) steps at positive heights). An ascent is a maximal sequence of consecutive (1,1)-steps.

Original entry on oeis.org

0, 0, 1, 2, 5, 10, 23, 46, 102, 204, 443, 886, 1898, 3796, 8054, 16108, 33932, 67864, 142163, 284326, 592962, 1185924, 2464226, 4928452, 10209620, 20419240, 42190558, 84381116, 173962532, 347925064, 715908428, 1431816856, 2941192472, 5882384944, 12065310083, 24130620166
Offset: 0

Views

Author

Emeric Deutsch, Jun 01 2011

Keywords

Comments

a(n+2) is the length of a lock-breaking sequence for a lock having buttons 1,2,...,n and a reset button R, and a combination that is any subset of the buttons (the lock opens if the proper combination is pressed after an R). For example, R123R23R31 is a length-10 sequence that unlocks the case of 3 buttons, because each of the 8 subsets occurs somewhere in the sequence between resets. This problem is due to John Guilford. Proof that the shortest sequence has length a(n+2) is due to Dan Velleman and Stan Wagon. - Stan Wagon, Feb 17 2019

Examples

			a(4) = 5 because in HHHH, HHUD, HUDH, UDHH, UDUD, and UUDD we have a total of 0+1+1+1+2+0=5 ascents of length 1.
		

Crossrefs

Cf. A191384.
If the two initial zeros are omitted, we get A323988.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); [0,0] cat Coefficients(R!( x^2*(1+Sqrt(1-4*x^2))/(2*(1-2*x)*Sqrt(1-4*x^2)) )); // G. C. Greubel, Feb 17 2019
    
  • Maple
    g := (1/2)*z^2*(1+sqrt(1-4*z^2))/((1-2*z)*sqrt(1-4*z^2)): gser := series(g, z = 0, 38): seq(coeff(gser, z, n), n = 0 .. 35);
  • Mathematica
    CoefficientList[Series[(1/2)*x^2*(1+Sqrt[1-4*x^2])/((1-2*x)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    z='z+O('z^40); concat([0,0], Vec(z^2*(1+sqrt(1-4*z^2))/(2*(1-2*z)*sqrt(1-4*z^2)))) \\ G. C. Greubel, Mar 26 2017
    
  • Sage
    (x^2*(1+sqrt(1-4*x^2))/(2*(1-2*x)*sqrt(1-4*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 17 2019

Formula

G.f.: g(z) = z^2*(1+sqrt(1-4*z^2))/(2*(1-2*z)*sqrt(1-4*z^2)). [The next three formulas follow from this. - N. J. A. Sloane, Feb 13 2019]
-(n-2)*a(n) + 2*(n-2)*a(n-1) + 4*(n-3)*a(n-2) - 8*(n-3)*a(n-3) = 0. - R. J. Mathar, Jun 14 2016
For n > 1, a(n) = 2^(n - 3) + binomial(n-2, floor(n/2-1))*(n - 1)/2. [See Kangro-Pourmoradnasseri-Theis, first page] - Dan Velleman, Feb 12 2019
a(n) = Sum_{k>=0} k*A191384(n,k).
a(n) ~ 2^(n-5/2)*sqrt(n)/sqrt(Pi) * (1 + sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 21 2014