A191388 Number of dispersed Dyck paths of length n (i.e., Motzkin paths of length n with no (1,0) steps at positive heights) with no valleys at level 0.
1, 1, 2, 3, 5, 8, 14, 23, 41, 69, 125, 214, 393, 682, 1267, 2223, 4171, 7385, 13976, 24935, 47544, 85377, 163863, 295900, 571216, 1036471, 2011130, 3664548, 7143068, 13063637, 25568085, 46912433, 92152906, 169570215, 334194418, 616530391, 1218694221, 2253451666, 4466410838
Offset: 0
Keywords
Examples
a(4)=5 because we have HHHH, HHUD, HUDH, UDHH, and UUDD, where U=(1,1), H=(1,0), and D=(1,-1) (UDUD does not qualify).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Helmut Prodinger, Dispersed Dyck paths revisited, arXiv:2402.13026 [math.CO], 2024.
Crossrefs
Cf. A191387.
Programs
-
Maple
g := (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 38);
-
Mathematica
CoefficientList[Series[(3-Sqrt[1-4*x^2])/(2-3*x+x*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
-
Maxima
a(n):=1+sum(sum((k+1)*binomial(2*i-k,i-k)*binomial(n-2*i-1,k+1),k,0,i)/(i+1),i,0,(n-1)/2); /* Vladimir Kruchinin, Mar 27 2016 */
-
PARI
x='x+O('x^99); Vec((3-sqrt(1-4*x^2))/(2-3*x+x*sqrt(1-4*x^2))) \\ Altug Alkan, Mar 27 2016
Formula
a(n) = A191387(n,0).
G.f.: (3-sqrt(1-4*z^2))/(2-3*z+z*sqrt(1-4*z^2)).
a(n) ~ 2^(n+5/2) * (1+(-1)^n/49) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 21 2014
a(n) = 1+Sum_{i=0..(n-1)/2}(Sum_{k=0..i}((k+1)*binomial(2*i-k,i-k)*binomial(n-2*i-1,k+1))/(i+1)). - Vladimir Kruchinin, Mar 27 2016
D-finite with recurrence -n*a(n) +3*n*a(n-1) +2*(n-6)*a(n-2) +12*(-n+3)*a(n-3) +(7*n-24)*a(n-4) +4*(n-3)*a(n-6)=0. - R. J. Mathar, Sep 24 2021