cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191393 Number of dispersed Dyck paths of length n (i.e., of Motzkin paths of length n with no (1,0)-steps at positive heights) having no base pyramids. A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 8, 13, 31, 49, 109, 170, 371, 581, 1270, 2010, 4417, 7063, 15581, 25123, 55554, 90179, 199752, 326089, 723351, 1186670, 2635764, 4342829, 9657336, 15973459, 35558165, 59017088, 131500422, 218932442, 488234057, 815127111, 1819186163
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2011

Keywords

Comments

a(n) = A191392(n,0).

Examples

			a(7)=3 because we have HHHHHHH, HUUDUDD, and UUDUDDH, where U=(1,1), D=(1,-1), and H=(1,0).
		

Crossrefs

Cf. A191392.

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); Coefficients(R! (2*(1-x^2))/(1-2*x+x^2+2*x^3+(1-x^2)*Sqrt(1-4*x^2))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g := (2*(1-z^2))/(1-2*z+z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 38);
  • Mathematica
    CoefficientList[Series[(2*(1-x^2))/(1-2*x+x^2+2*x^3+(1-x^2)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 20 2014 *)

Formula

G.f.: (2*(1-z^2))/(1-2*z+z^2+2*z^3+(1-z^2)*sqrt(1-4*z^2)).
a(n) ~ 9 * 2^(n-11/2) * (16+(-1)^n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 20 2014
D-finite with recurrence (n+1)*a(n) +3*(-n-1)*a(n-1) +(-5*n+13)*a(n-2) +(19*n-35)*a(n-3) +3*(n-11)*a(n-4) +2*(-17*n+73)*a(n-5) +(5*n-13)*a(n-6) +2*(13*n-77)*a(n-7) +4*(-n+8)*a(n-8) +8*(-n+8)*a(n-9)=0. - R. J. Mathar, Jul 26 2022