A191411 Class number, k, of n; i.e., imaginary quadratic fields negated Q(sqrt(-n))=k, or 0 if n is not squarefree (A005117).
1, 1, 1, 0, 2, 2, 1, 0, 0, 2, 1, 0, 2, 4, 2, 0, 4, 0, 1, 0, 4, 2, 3, 0, 0, 6, 0, 0, 6, 4, 3, 0, 4, 4, 2, 0, 2, 6, 4, 0, 8, 4, 1, 0, 0, 4, 5, 0, 0, 0, 2, 0, 6, 0, 4, 0, 4, 2, 3, 0, 6, 8, 0, 0, 8, 8, 1, 0, 8, 4, 7, 0, 4, 10, 0, 0, 8, 4, 5, 0, 0, 4, 3, 0, 4, 10, 6, 0, 12, 0, 2, 0, 4, 8, 8, 0, 4, 0, 0, 0, 14, 4, 5, 0, 8
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Class Number
- Index entries for sequences related to quadratic fields
Crossrefs
a(n)= 0: A013929; a(n)= 1: A003173; a(n)= 2: A005847; a(n)= 3: A006203; a(n)= 4: A046085; a(n)= 5: A046002; a(n)= 6: A055109; a(n)= 7: A046004; a(n)= 8: A055110; a(n)= 9: A046006; a(n)=10: A055111; a(n)=11: A046008; a(n)=12: n/a;
a(n)=13: A046010; a(n)=14: n/a; a(n)=15: A046012; a(n)=16: n/a; a(n)=17: A046014; a(n)=18: n/a; a(n)=19: A046016;
a(n)=20: n/a; a(n)=21: A046018; a(n)=22: n/a;
Cf. A000924 (without the zeros).
Programs
-
Mathematica
f[n_] := If[! SquareFreeQ@ n, 0, NumberFieldClassNumber@Sqrt@ -n]; Array[f, 105]
-
PARI
a(n) = if (! issquarefree(n), 0, qfbclassno(-n*if((-n)%4>1, 4, 1))); \\ Michel Marcus, Jul 08 2015