A191449 Dispersion of (3,6,9,12,15,...), by antidiagonals.
1, 3, 2, 9, 6, 4, 27, 18, 12, 5, 81, 54, 36, 15, 7, 243, 162, 108, 45, 21, 8, 729, 486, 324, 135, 63, 24, 10, 2187, 1458, 972, 405, 189, 72, 30, 11, 6561, 4374, 2916, 1215, 567, 216, 90, 33, 13, 19683, 13122, 8748, 3645, 1701, 648, 270, 99, 39, 14, 59049
Offset: 1
Examples
Northwest corner: 1...3....9....27...81 2...6....18...54...162 4...12...36...108..324 5...15...45...135..405 7...21...63...189..567
Crossrefs
Programs
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=3n (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191449 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191449 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Formula
T(i,j)=T(i,1)*T(1,j)=floor((3i-1)/2)*3^(j-1).
Comments