A191655 Dispersion of (2,5,8,11,14,17,...), by antidiagonals.
1, 3, 2, 6, 4, 5, 10, 7, 9, 8, 16, 12, 15, 13, 11, 25, 19, 24, 21, 18, 14, 39, 30, 37, 33, 28, 22, 17, 60, 46, 57, 51, 43, 34, 27, 20, 91, 70, 87, 78, 66, 52, 42, 31, 23, 138, 106, 132, 118, 100, 79, 64, 48, 36, 26, 208, 160, 199, 178, 151, 120, 97, 73, 55
Offset: 1
Examples
Northwest corner: 1...3...6....10...16 2...4...7....12...19 5...9...15...24...37 8...13..21...33...51 11..18..28...43...66
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a = 3; b = 4; m[n_] := If[Mod[n, 2] == 0, 1, 0]; f[n_] := a*m[n + 1] + b*m[n] + 3*Floor[(n - 1)/2] Table[f[n], {n, 1, 30}] (* A032766: (3+5k,4+5k, k>=0) *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i,1,10}, {j,1,10}]] (* A191655 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191655 sequence *)
Comments