A191450 Dispersion of (3*n-1), read by antidiagonals.
1, 2, 3, 5, 8, 4, 14, 23, 11, 6, 41, 68, 32, 17, 7, 122, 203, 95, 50, 20, 9, 365, 608, 284, 149, 59, 26, 10, 1094, 1823, 851, 446, 176, 77, 29, 12, 3281, 5468, 2552, 1337, 527, 230, 86, 35, 13, 9842, 16403, 7655, 4010, 1580, 689, 257, 104, 38, 15, 29525
Offset: 1
Examples
The northwest corner of the square array: 1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, 29525, 88574, ... 3, 8, 23, 68, 203, 608, 1823, 5468, 16403, 49208, 147623, 442868, ... 4, 11, 32, 95, 284, 851, 2552, 7655, 22964, 68891, 206672, 620015, ... 6, 17, 50, 149, 446, 1337, 4010, 12029, 36086, 108257, 324770, 974309, ... 7, 20, 59, 176, 527, 1580, 4739, 14216, 42647, 127940, 383819, 1151456, ... 9, 26, 77, 230, 689, 2066, 6197, 18590, 55769, 167306, 501917, 1505750, ... etc. The leftmost column is A032766, and each successive column to the right of it is obtained by multiplying the left neighbor on that row by three and subtracting one, thus the second column is (3*1)-1, (3*3)-1, (3*4)-1, (3*6)-1, (3*7)-1, (3*9)-1, ... = 2, 8, 11, 17, 20, 26, ...
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10440; the first 144 antidiagonals of array
- Clark Kimberling, Interspersions and Dispersions.
- Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
- Index entries for sequences that are permutations of the natural numbers
Programs
-
Maple
A191450 := proc(r, c) option remember; if c = 1 then A032766(r) ; else A016789(procname(r, c-1)-1) ; end if; end proc: # R. J. Mathar, Jan 25 2015
-
Mathematica
(* Program generates the dispersion array T of increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=3n-1 (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191450 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191450 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
-
PARI
a(n,k)=3^(n-1)*(k*3\2*2-1)\2+1 \\ =3^(n-1)*(k*3\2-1/2)+1/2, but 30% faster. - M. F. Hasler, Jan 20 2015
-
Scheme
(define (A191450 n) (A191450bi (A002260 n) (A004736 n))) (define (A191450bi row col) (if (= 1 col) (A032766 row) (A016789 (- (A191450bi row (- col 1)) 1)))) (define (A191450bi row col) (/ (+ 3 (* (A000244 col) (- (* 2 (A032766 row)) 1))) 6)) ;; Another implementation based on L. Edson Jeffery's direct formula. ;; Antti Karttunen, Jan 21 2015
Formula
Conjecture: A(n,k) = (3 + (2*A032766(n) - 1)*A000244(k))/6. - L. Edson Jeffery, with slight changes by Antti Karttunen, Jan 21 2015
a(n) = A254051(A038722(n)). [When both this and transposed array A254051 are interpreted as one-dimensional sequences.] - Antti Karttunen, Jan 22 2015
Extensions
Example corrected and description clarified by Antti Karttunen, Jan 24 2015
Comments