A191485 Numbers n=k^2-k+1 such that 2^k == 1 (mod n).
1, 3, 7, 73, 601, 8191, 262657, 8640661
Offset: 1
Keywords
Examples
k = 9; n = k^2 - k + 1 = 81 - 9 + 1 = 73; 2^9 == 1 (mod 73).
Programs
-
PARI
for(k=1,10^9,n=k^2-k+1;if( lift(Mod(2,n)^k)==1,print1(n,", "))); /* Joerg Arndt, Jun 03 2011 */
Comments