cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191486 Squares using only the prime digits (2,3,5,7).

Original entry on oeis.org

25, 225, 7225, 27225, 55225, 235225, 2772225, 3553225, 23377225, 33235225, 57532225, 227557225, 252333225, 277722225, 337273225, 357777225, 523723225, 735223225, 777573225, 2523555225, 3325252225, 3377353225, 5232352225, 7333353225
Offset: 1

Views

Author

Giovanni Teofilatto, Jun 03 2011

Keywords

Comments

a(n) = 225 mod 1000 for n > 1. - Charles R Greathouse IV, May 14 2013
The sequence is infinite: it contains A030485 as an infinite proper subsequence which in turn contains all numbers of the form ((5*10^n-5)/3)^2 as a proper subsequence. - M. F. Hasler, Sep 16 2016

Crossrefs

Programs

  • Magma
    [n^2: n in [5..5*10^5] | Set(Intseq(n^2)) subset {2,3,5,7}];  // Bruno Berselli, Jun 06 2011
    
  • Maple
    for b from 1 do convert(convert(b^2,base,10),set) ; if % minus {2,3,5,7} = {} then printf("%d,\n",b^2) ; end if; end do: # R. J. Mathar, Jun 03 2011
  • Mathematica
    w = Boole@! PrimeQ@ # & /@ RotateLeft@ Range[0, 9]; Select[Range[10^5]^2, Total@ Pick[DigitCount@ #, w, 1] == 0 &] (* Michael De Vlieger, Aug 15 2016 *)
  • PARI
    toprime(n,k)=n<<=2;sum(i=0,k-1,n>>=2;[2,3,5,7][bitand(n,3)+1]*10^i)
    v=List([25]);for(k=0,9,for(n=0,4^k-1,t=1000*toprime(n,k)+225;if(issquare(t),listput(v,t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, May 14 2013
    
  • Python
    from math import isqrt
    def aupto(limit):
      alst, rootlimit = [], isqrt(limit)
      for k in range(1, rootlimit+1):
        if set(str(k*k)) <= set("2357"): alst.append(k*k)
      return alst
    print(aupto(7333353225)) # Michael S. Branicky, May 15 2021

Formula

a(n) = A275971(n)^2. - M. F. Hasler, Sep 16 2016