cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A191680 Number of compositions of odd natural numbers into 9 parts <= n.

Original entry on oeis.org

0, 256, 9841, 131072, 976562, 5038848, 20176803, 67108864, 193710244, 500000000, 1178973845, 2579890176, 5302249686, 10330523392, 19221679687, 34359738368, 59293938248, 99179645184, 161343848889, 256000000000, 397140023290, 603634608896, 900576330731, 1320903770112, 1907348632812, 2714751839488
Offset: 0

Views

Author

Adi Dani, Jun 11 2011

Keywords

Examples

			a(1)=256 compositions of odd numbers into 9 parts <= 1:
  1: (0,0,0,0,0,0,0,0,1) --> 9!/(8!1!) =   9
  3: (0,0,0,0,0,0,1,1,1) --> 9!/(6!3!) =  84
  5: (0,0,0,0,1,1,1,1,1) --> 9!/(4!5!) = 126
  7: (0,0,1,1,1,1,1,1,1) --> 9!/(2!7!) =  36
  9: (1,1,1,1,1,1,1,1,1) --> 9!/(0!9!) =   1
  ------------------------------------------
                                         256
		

Programs

  • Magma
    [1/2*((n + 1)^9 - (1 + (-1)^n)/2): n in [0..30]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    Table[Floor[1/2*((n + 1)^9 - (1 + (-1)^n)/2)], {n, 0, 25}]

Formula

a(n) = ((n + 1)^9 - (1 + (-1)^n)/2)/2.
G.f.: x*(256 + 7537*x + 51463*x^2 + 122149*x^3 + 122275*x^4 + 51379*x^5 + 7573*x^6 + 247*x^7 + x^8) / ( (1+x)*(x-1)^10 ). - R. J. Mathar, Jun 29 2011
a(n) = 9*a(n-1) - 35*a(n-2) + 75*a(n-3) - 90*a(n-4) + 42*a(n-5) + 42*a(n-6) - 90*a(n-7) + 75*a(n-8) - 35*a(n-9) + 9*a(n-10) - a(n-11). - R. J. Mathar, Jun 29 2011
a(2n) = A191496(2n) - 1. a(2n+1) = A191496(2n+1). - R. J. Mathar, Jun 29 2011

Extensions

Offset changed from 1 to 0 by Vincenzo Librandi, Jun 16 2011

A191687 Table T(n,k) = ceiling((1/2)*((k+1)^n+(1+(-1)^k)/2)) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 2, 1, 1, 8, 14, 8, 3, 1, 1, 16, 41, 32, 13, 3, 1, 1, 32, 122, 128, 63, 18, 4, 1, 1, 64, 365, 512, 313, 108, 25, 4, 1, 1, 128, 1094, 2048, 1563, 648, 172, 32, 5, 1
Offset: 1

Views

Author

Adi Dani, Jun 11 2011

Keywords

Comments

T(n,k) is the number of compositions of even natural numbers into n parts <= k.

Examples

			Top left corner:
  1, 1, 1,  1,  1,...
  1, 1, 2,  2,  3,...
  1, 2, 5,  8, 13,...
  1, 4,14, 32, 63,...
  1, 8,41,128,313,...
T(2,4)=13: there are 13 compositions of even natural numbers into 2 parts <=4
0: (0,0);
2: (0,2), (2,0), (1,1);
4: (0,4), (4,0), (1,3), (3,1), (2,2);
6: (2,4), (4,2), (3,3);
8: (4,4).
		

Crossrefs

Programs

  • Mathematica
    Table[Table[Ceiling[1/2*((k+1)^n+(1+(-1)^k)/2)],{n,0,9},{k,0,9}]]
Showing 1-2 of 2 results.