cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A380158 Expansion of e.g.f. sqrt(exp(-2*x) + 2*x).

Original entry on oeis.org

1, 0, 2, -4, -4, 64, -8, -3312, 14352, 267776, -3403744, -24119360, 881205184, -593040384, -261913919616, 2567414468864, 83291021050112, -2080429273726976, -22004502593928704, 1526354137528335360, -3870482611349750784, -1112746657730132623360, 18568218633016319670272
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, 2^k*(2*k-1)^(n-k)*binomial(1/2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} 2^k * (2*k-1)^(n-k) * binomial(1/2,k)/(n-k)!.
a(n) == 0 (mod 2) for n>0.

A380157 Expansion of e.g.f. (1 + 3*x*exp(3*x))^(1/3).

Original entry on oeis.org

1, 1, 4, 1, -44, 265, 2458, -48419, -99320, 12598417, -82133810, -4205894891, 86494587292, 1457086105657, -79743685096670, -88062957588275, 77425160027442832, -1138977883460384735, -76951663963327663082, 2978943480750081242629, 64353221406902873516260
Offset: 0

Views

Author

Seiichi Manyama, Jan 13 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 3^n*n!*sum(k=0, n, k^(n-k)*binomial(1/3, k)/(n-k)!);

Formula

a(n) = 3^n * n! * Sum_{k=0..n} k^(n-k) * binomial(1/3,k)/(n-k)!.
a(n) == 1 (mod 3).
Showing 1-2 of 2 results.