A191504 Decimal expansion of the number 1/(1+1/(1+2/(1+3/(1+5/(1+7/(1+11/(1+13/(1+17/(1+19/(1+... )))))))))), where coefficients > 1 are the primes.
6, 6, 2, 0, 9, 4, 2, 5, 1, 7, 8, 5, 1, 0, 3, 7, 5, 8, 8, 1, 2, 3, 1, 8, 1, 0, 8, 9, 8, 4, 1, 6, 3, 6, 8, 6, 0, 7, 3, 3, 8, 5, 4, 7, 7, 0, 8, 1, 2, 4, 4, 6, 6, 3, 2, 3, 2, 0, 1, 9, 3, 1, 2, 8, 5, 5, 4, 0, 4, 3, 3, 9, 7, 6, 2, 2, 7, 7, 5, 4, 4, 4, 2, 4, 3, 0, 1, 4, 4, 7, 8, 9, 8, 2, 6, 0, 6, 5, 3, 6, 4, 9, 6, 5, 7, 8, 9, 6, 6, 2, 5, 0, 5, 5, 9, 7, 2, 7, 0, 9, 8, 8, 0, 2, 6, 5, 0, 9, 6, 6, 2, 5, 0, 4, 3, 3, 9, 0, 2, 1, 4, 6, 5, 0, 2, 1, 7, 6, 8, 7, 3, 6, 2, 5, 8, 7, 7, 5, 5, 2, 8, 4, 8, 6, 8, 5, 5, 1, 1, 9, 9, 3, 4, 9, 5, 5, 7, 6, 4, 2, 3, 2, 5, 4, 8, 2, 2, 7, 5
Offset: 0
Examples
0.6620942517851037588123181089841636860733854770812446632320193128554043...
Crossrefs
Cf. A191608.
Programs
-
Mathematica
N[Fold[#2/(1 + #1) &, 0, Join[Reverse@Prime@Range@180000, {1, 1}]], 111] (* Robert G. Wilson v, Jun 16 2011 *)
-
PARI
default(realprecision,80); s=sqrt(p=1e6); while(p=precprime(p-1),s=p/(1+s)); eval(vecextract(Vec(Str((1+s)/(2+s))),"3..-2")) \\ M. F. Hasler, Jun 16 2011
Formula
1/(1+1/(1+2/(1+3/(1+5/(1+7/(1+11/(1+13/(1+17/(1+19/(1+... ))))))))))
Extensions
Values corrected upon observation by R. J. Mathar, Jun 16 2011
Corrected and extended by Max Alekseyev, Aug 11 2013
Comments