A191510 Product of terms in n-th row of A132818.
1, 9, 648, 360000, 1518750000, 48243443062500, 11480517255997440000, 20400479323264014247526400, 270090559531318533654528000000000, 26599911685677709861296622500000000000000, 19464564507161243794359748945629699456000000000000
Offset: 1
Examples
For n=3, row 3 of A132818 = {6,18,6} and a(3)=648.
Links
- H. J. Brothers and J. A. Knox, New closed-form approximations to the logarithmic constant e, Math. Intelligencer, Vol. 20, No. 4, (1998), 25-29.
Programs
-
Mathematica
Table[Product[Product[((k + 1)/(k - 1))^k, {k, 2, j}], {j, 1, n}], {n, 1, 11}] Table[(n + 1)^n * Hyperfactorial[n]^2 / (2^n * BarnesG[n+2]^2), {n, 1, 12}] (* Vaclav Kotesovec, Jul 11 2015 *)
Formula
a(n)=product[product[((k + 1)/(k - 1))^k, {k, 2, j}], {j, 1, n}].
a(n) ~ A^4 * exp(n^2 + 2*n + 5/6) / (n^(2/3) * 2^(2*n+1) * Pi^(n+1)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 11 2015
Comments