cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191526 Number left factors of Dyck paths of length n and having no hills; a hill is a (1,1)-step starting at level 0 and followed by a (1,-1)-step.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 13, 24, 46, 86, 166, 314, 610, 1163, 2269, 4352, 8518, 16414, 32206, 62292, 122464, 237590, 467842, 909960, 1794196, 3497248, 6903352, 13480826, 26635774, 52097267, 103020253, 201780224, 399300166, 783051638, 1550554582, 3044061116
Offset: 0

Views

Author

Emeric Deutsch, Jun 06 2011

Keywords

Examples

			a(4)=4 because the paths UUDD, UUDU, UUUD, and UUUU have no hills; here U=(1,1) and D=(1,-1) (UDUD and UDUU have 2 and 1 hills, respectively).
		

Crossrefs

Cf. A191525.

Programs

  • Maple
    g := (((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
  • Mathematica
    CoefficientList[Series[(((1+x)*Sqrt[1-4*x^2]-(1-x)*(1-2*x))*1/2)/(x*(1-2*x) *(2+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    z='z+O('z^50); Vec((((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2))) \\ G. C. Greubel, Mar 27 2017

Formula

a(n) = A191525(n,0).
G.f.: (((1+z)*sqrt(1-4*z^2)-(1-z)*(1-2*z))*1/2)/(z*(1-2*z)*(2+z^2)).
a(n) ~ 2^(n+3/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -2*(n+1)*(3*n-10)*a(n) +12*(n-5)*a(n-1) +(21*n^2-97*n+122)*a(n-2) +6*(n-5)*a(n-3) +4*(n-2)*(3*n-7)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
Showing 1-1 of 1 results.