cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191532 Triangle T(n,k) read by rows: T(n,n) = 2n+1, T(n,k)=k for k

Original entry on oeis.org

1, 0, 3, 0, 1, 5, 0, 1, 2, 7, 0, 1, 2, 3, 9, 0, 1, 2, 3, 4, 11, 0, 1, 2, 3, 4, 5, 13, 0, 1, 2, 3, 4, 5, 6, 15, 0, 1, 2, 3, 4, 5, 6, 7, 17, 0, 1, 2, 3, 4, 5, 6, 7, 8, 19, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 21, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27
Offset: 0

Views

Author

Paul Curtz, Jun 05 2011

Keywords

Comments

We can build products of linear polynomials with these T(n,k) defining the absolute terms:
1+n = A000027(1+n) =2, 3, 4, 5, 6, 7,
n*(3+n)/2 = A000096(1+n) =2, 5, 9, 14, 20, 27,
n*(1+n)*(5+n)/6 = A005581(2+n) =2, 7, 16, 30, 50, 77,
n*(1+n)*(2+n)*(7+n)/24 = A005582(1+n) =2, 9, 25, 55, 105, 182,
n*(1+n)*(2+n)*(3+n)*(9+n)/120 = A005583(n) =2, 11, 36, 91, 196, 378,
n*(1+n)*(2+n)*(3+n)*(4+n)*(11+n)/720 = A005584(n)=2, 13, 49, 140, 336, 714,

Examples

			1;
0,3;
0,1,5;
0,1,2,7;
0,1,2,3,9;
0,1,2,3,4,11;
		

Crossrefs

Cf. A191302.

Formula

T(n,k) = A002262(n-1,k).
sum_{k=0..n} T(n,k) = A000217(1+n).