A191536 Dispersion of (3+floor(n*sqrt(2))), by antidiagonals.
1, 4, 2, 8, 5, 3, 14, 10, 7, 6, 22, 17, 12, 11, 9, 34, 27, 19, 18, 15, 13, 51, 41, 29, 28, 24, 21, 16, 75, 60, 44, 42, 36, 32, 25, 20, 109, 87, 65, 62, 53, 48, 38, 31, 23, 157, 126, 94, 90, 77, 70, 56, 46, 35, 26, 225, 181, 135, 130, 111, 101, 82, 68, 52, 39
Offset: 1
Examples
Northwest corner: 1...4....8....14...22 2...5....10...17...27 3...7....12...19...29 6...11...18...28...42 9...15...24...36...54
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* Program generates the dispersion array T of the increasing sequence f[n] *) r=40; r1=12; c=40; c1=12; f[n_] :=3+Floor[n*Sqrt[2]] (* complement of column 1 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A191536 array *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191536 sequence *) (* Program by Peter J. C. Moses, Jun 01 2011 *)
Comments