cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191547 a(n) is the smallest number k such that 2*k*n + 1 is a prime dividing prime(n)^n + 1.

Original entry on oeis.org

1, 1, 1, 150, 1342, 2366, 1628328, 942, 9, 21, 34420, 146353232490, 3, 1, 810589181792, 4268555, 623525228930150853776330584, 1, 65647507266341, 1, 1, 2, 15, 2, 9774000, 1, 328, 75, 1, 3, 44, 7, 1, 2, 1, 1, 3, 16353757, 2, 5036, 1, 23, 23, 1, 216, 1218482865908370401
Offset: 1

Views

Author

Michel Lagneau, Jun 05 2011

Keywords

Examples

			a(4) = 150 because 2*150*4 + 1 = 1201, which is the smallest prime of the form 2*k*4 + 1 that divides prime(4)^4 + 1 = 7^4 + 1 = 2402 = 2*1201.
		

Crossrefs

Programs

  • Maple
    A191547 :=proc(n) local d,a,k ; a := -1 ; for d in numtheory[factorset](ithprime(n)^n+1) do k := (d-1)/2/n ; if type(k,'integer') and k >0 then if a = -1 then a := k; elif k < a then a := k; end if; end if ; end do: return a ; end proc: # R. J. Mathar, Jun 08 2011
  • Mathematica
    Table[p=First/@FactorInteger[Prime[ n]^n+1]; (Select[p, Mod[#1, n] == 1 &,
      1][[1]] - 1)/(2n), {n, 1, 35}]

Extensions

a(31)-a(46) from Amiram Eldar, Feb 17 2020