A191582 Riordan matrix (1/(1-3*x^2),x/(1-x)).
1, 0, 1, 3, 1, 1, 0, 4, 2, 1, 9, 4, 6, 3, 1, 0, 13, 10, 9, 4, 1, 27, 13, 23, 19, 13, 5, 1, 0, 40, 36, 42, 32, 18, 6, 1, 81, 40, 76, 78, 74, 50, 24, 7, 1, 0, 121, 116, 154, 152, 124, 74, 31, 8, 1, 243, 121, 237, 270, 306, 276, 198, 105, 39, 9, 1, 0, 364, 358, 507, 576, 582, 474, 303, 144, 48, 10, 1, 729, 364, 722, 865, 1083, 1158, 1056, 777, 447, 192, 58, 11, 1
Offset: 0
Examples
Triangle begins: 1 0, 1 3, 1, 1 0, 4, 2, 1 9, 4, 6, 3, 1 0, 13, 10, 9, 4, 1 27, 13, 23, 19, 13, 5, 1 0, 40, 36, 42, 32, 18, 6, 1 81, 40, 76, 78, 74, 50, 24, 7, 1
Programs
-
Mathematica
Flatten[Table[Sum[Binomial[n-2i-1,n-k-2i]3^i,{i,0,((n-k))/2}],{n,0,20},{k,0,n}]]
-
Maxima
create_list(sum(binomial(n-2*i-1,n-k-2*i)*3^i,i,0,(n-k)/2),n,0,20,k,0,n);
Formula
T(n,k) = Sum_{i=0..(n-k)/2} binomial(n-2*i-1,n-k-2*i)*3^i.
Recurrence: T(n+1,k+1) = T(n,k) + T(n,k+1).
Comments