cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191586 Binomial row sums of the Riordan matrix (1/(1-x),x/(1-x^2)) (A046854).

Original entry on oeis.org

1, 2, 4, 11, 32, 92, 271, 814, 2464, 7508, 23024, 70952, 219503, 681358, 2121116, 6619571, 20703040, 64873328, 203625604, 640109128, 2014951552, 6350490808, 20037015200, 63284778256, 200063948527, 633007850942, 2004431426716, 6351693835169, 20141013776384
Offset: 0

Views

Author

Emanuele Munarini, Jun 07 2011

Keywords

Crossrefs

Cf. A046854.

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]Binomial[Floor[(n+k)/2],k],{k,0,n}],{n,0,100}]
  • Maxima
    makelist(sum(binomial(n,k)*binomial(floor((n+k)/2),k),k,0,n),n,0,12);

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*binomial(floor((n+k)/2),k).
(8*n^2+88*n+240)*a(n+6) - (72*n^2+636*n+1380)*a(n+5) + (180*n^2+1300*n+2232)*a(n+4) - (180*n^2+1170*n+1842)*a(n+3) + (326*n^2+2074*n+3164)*a(n+2) - (228*n^2+948*n+984)*a(n+1) + (35*n^2+105*n+70)*a(n) = 0. - Emanuele Munarini, Aug 31 2017