cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368424 Numbers k such that gcd(A019320(k), A019321(k)) > 1.

Original entry on oeis.org

4, 11, 18, 20, 23, 28, 35, 43, 48, 52, 83, 95, 100, 119, 131, 138, 148, 155, 162, 166, 172, 179, 191, 196, 204, 210, 214, 239, 251, 253, 268, 292, 299, 300, 316, 323, 342, 359, 371, 378, 388, 419, 431, 443, 460, 463, 491, 500, 508, 515, 537, 556, 564, 575
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Comments

The corresponding greatest common divisors are given in A368425.

Examples

			a(1) = 4 since A019320(4) = 5 and A019321(4) = 10.
		

Crossrefs

Cf. A019320, A019321, A191609 (prime factors of such gcds), A368425.

Programs

  • Maple
    select(k -> igcd(numtheory:-cyclotomic(k,2),
    numtheory:-cyclotomic(k,3)) > 1, [$1..1000]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[Range[600],GCD[Cyclotomic[#,2],Cyclotomic[#,3]]>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,if(gcd(polcyclo(n,2),polcyclo(n,3))>1,print1(n,", ")))

A368425 The corresponding greatest common divisors to A368424(n).

Original entry on oeis.org

5, 23, 19, 5, 47, 29, 71, 431, 97, 53, 167, 191, 505, 239, 263, 139, 149, 311, 163, 499, 173, 359, 383, 197, 409, 211, 643, 479, 503, 23, 269, 293, 599, 1201, 317, 647, 19, 719, 743, 379, 389, 839, 863, 887, 461, 11113, 983, 5, 509, 1031, 4297, 557, 1129
Offset: 1

Views

Author

Tomohiro Yamada, Dec 24 2023

Keywords

Examples

			a(2) = 23 since gcd(A019320(A368424(2)), A019321(A368424(2))) = gcd(2047, 88573) = 23.
		

Crossrefs

Cf. A019320, A019321, A191609 (primes dividing some term of this sequence), A368424.

Programs

  • Maple
    subs(1=NULL, [seq(igcd(numtheory:-cyclotomic(n,2), numtheory:-cyclotomic(n,3)),n=1..1000)]); # Robert Israel, Dec 26 2023
  • Mathematica
    Select[GCD[Cyclotomic[Range[600], 2], Cyclotomic[Range[600], 3]],#>1&] (* Stefano Spezia, Dec 26 2023 *)
  • PARI
    for(n=1,1000,m=gcd(polcyclo(n,2),polcyclo(n,3));if(m>1,print1(m,", ")))
Showing 1-2 of 2 results.