A191612 Image of A008578 (the noncomposite numbers) under the "forming" transformation.
1, 2, 3, 4, 6, 8, 12, 16, 18, 20, 24, 30, 36, 40, 42, 44, 48, 54, 60, 66, 68, 72, 78, 80, 84, 96, 100, 102, 104, 108, 112, 126, 128, 132, 138, 140, 150, 156, 162, 164, 168, 174, 180, 190, 192, 196, 198, 204, 216, 224, 228
Offset: 1
Examples
a(10) = 20 because 20 is the only integer such that 19 = A008578(9) < 20 <= A008578(10) = 23 and simultaneously is multiple of difference A008578(10) - A008578(9) = 4.
Programs
-
Maple
Tf := proc(L) local a,j,c ; a := [op(1,L)] ; while nops(a) < nops(L)-1 do j := nops(a)+1 ; for c from op(j-1,L)+1 to op(j,L) do if (c mod ( op(j,L)-op(j-1,L) )) = 0 then a := [op(a),c] ; break; end if; end do: end do: a ; end proc: nonc := [seq(A008578(n),n=1..80)] ; Tf(nonc) ; # R. J. Mathar, Oct 27 2011
Formula
For n > 3, a(n) = A113709(n-2).
Comments