A191647 Numbers n with property that the concatenation of their anti-divisors is a prime.
3, 4, 5, 10, 14, 16, 40, 46, 100, 145, 149, 251, 340, 373, 406, 424, 439, 466, 539, 556, 571, 575, 617, 619, 628, 629, 655, 676, 689, 724, 760, 779, 794, 899, 901, 941, 970, 989, 1019, 1055, 1070, 1076, 1183, 1213, 1226, 1231, 1258, 1270, 1285, 1331, 1340
Offset: 1
Examples
The anti-divisors of 40 are 3, 9, 16, 27, and 391627 is prime, hence 40 is in the sequence.
Links
- Klaus Brockhaus Table of n, a(n) for n = 1..1000 (first 250 terms from Paolo P. Lava)
Programs
-
Maple
P:=proc(i) local a,b,c,d,k,n,s,v; v:=array(1..200000); for n from 3 by 1 to i do k:=2; b:=0; while k
0 and (2*n mod k)=0 then b:=b+1; v[b]:=k; fi; else if (n mod k)>0 and (((2*n-1) mod k)=0 or ((2*n+1) mod k)=0) then b:=b+1; v[b]:=k; fi; fi; k:=k+1; od; a:=v[1]; for s from 2 to b do a:=a*10^floor(1+evalf(log10(v[s])))+v[s]; od; if isprime(a) then print(n); fi; od; end: P(10^6); -
Mathematica
antiDivisors[n_Integer] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; a191647[n_Integer] := Select[Range[n], PrimeQ[FromDigits[Flatten[IntegerDigits /@ antiDivisors[#]]]] &]; a191647[1350] (* Michael De Vlieger, Aug 09 2014, "antiDivisors" after Harvey P. Dale at A066272 *)
-
Python
from sympy import isprime [n for n in range(3,10**4) if isprime(int(''.join([str(d) for d in range(2,n) if n%d and 2*n%d in [d-1,0,1]])))] # Chai Wah Wu, Aug 08 2014
Extensions
a(618) corrected in b-file by Paolo P. Lava, Feb 28 2018
Comments