cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191647 Numbers n with property that the concatenation of their anti-divisors is a prime.

Original entry on oeis.org

3, 4, 5, 10, 14, 16, 40, 46, 100, 145, 149, 251, 340, 373, 406, 424, 439, 466, 539, 556, 571, 575, 617, 619, 628, 629, 655, 676, 689, 724, 760, 779, 794, 899, 901, 941, 970, 989, 1019, 1055, 1070, 1076, 1183, 1213, 1226, 1231, 1258, 1270, 1285, 1331, 1340
Offset: 1

Views

Author

Paolo P. Lava, Jun 10 2011

Keywords

Comments

Similar to A120712 which uses the proper divisors of n.

Examples

			The anti-divisors of 40 are 3, 9, 16, 27, and 391627 is prime, hence 40 is in the sequence.
		

Crossrefs

Programs

  • Maple
    P:=proc(i) local a,b,c,d,k,n,s,v; v:=array(1..200000);
    for n from 3 by 1 to i do k:=2; b:=0;
    while k0 and (2*n mod k)=0 then b:=b+1; v[b]:=k; fi;
         else
         if (n mod k)>0 and (((2*n-1) mod k)=0 or ((2*n+1) mod k)=0) then
    b:=b+1; v[b]:=k; fi; fi; k:=k+1; od; a:=v[1];
    for s from 2 to b do a:=a*10^floor(1+evalf(log10(v[s])))+v[s]; od;
    if isprime(a) then print(n); fi;
    od; end: P(10^6);
  • Mathematica
    antiDivisors[n_Integer] := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; a191647[n_Integer] := Select[Range[n],
    PrimeQ[FromDigits[Flatten[IntegerDigits /@ antiDivisors[#]]]] &]; a191647[1350] (* Michael De Vlieger, Aug 09 2014, "antiDivisors" after Harvey P. Dale at A066272 *)
  • Python
    from sympy import isprime
    [n for n in range(3,10**4) if isprime(int(''.join([str(d) for d in range(2,n) if n%d and 2*n%d in [d-1,0,1]])))] # Chai Wah Wu, Aug 08 2014

Extensions

a(618) corrected in b-file by Paolo P. Lava, Feb 28 2018