cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191660 Second differences of A000219.

Original entry on oeis.org

2, 1, 4, 4, 13, 14, 36, 48, 96, 141, 261, 386, 676, 1030, 1706, 2619, 4230, 6462, 10219, 15568, 24165, 36627, 56103, 84428, 127873, 191201, 286663, 425802, 632973, 933995, 1377774, 2020424, 2959438, 4314109, 6278824, 9100908, 13167388, 18983295, 27313916, 39177636, 56080228, 80048942, 114030110, 162018938, 229741517, 325000341, 458854803, 646409612
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2011

Keywords

References

  • G. Almkvist, The differences of the number of plane partitions, Manuscript, circa 1991.

Crossrefs

Programs

  • Mathematica
    Differences[CoefficientList[Series[Product[(1-x^k)^-k, {k,1,64}], {x,0,64}],x],2] (* Harvey P. Dale, Jun 19 2011 *)
    nmax = 50; Drop[CoefficientList[Series[(1-x)^2 * Product[1/(1-x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x], 2] (* Vaclav Kotesovec, Oct 30 2016 *)

Formula

a(n) ~ 2^(13/36) * Zeta(3)^(31/36) * exp(1/12 + 3*Zeta(3)^(1/3)*n^(2/3)/2^(2/3)) / (A * sqrt(3*Pi) * n^(49/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Oct 30 2016