A191725 Dispersion of A047208, (numbers >1 and congruent to 0 or 4 mod 5), by antidiagonals.
1, 4, 2, 10, 5, 3, 25, 14, 9, 6, 64, 35, 24, 15, 7, 160, 89, 60, 39, 19, 8, 400, 224, 150, 99, 49, 20, 11, 1000, 560, 375, 249, 124, 50, 29, 12, 2500, 1400, 939, 624, 310, 125, 74, 30, 13, 6250, 3500, 2349, 1560, 775, 314, 185, 75, 34, 16, 15625, 8750, 5874
Offset: 1
Examples
Northwest corner: 1....4....10....25....64 2....5....14....35...89 3....9....24...60...150 6....15...39...99...249 7....19...49...124..310 8....20...50...125...314
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=4; b=5; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047208 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191725 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191725 *)
Comments