A191730 Dispersion of A047211, (numbers >1 and congruent to 2 or 4 mod 5), by antidiagonals.
1, 2, 3, 4, 7, 5, 9, 17, 12, 6, 22, 42, 29, 14, 8, 54, 104, 72, 34, 19, 10, 134, 259, 179, 84, 47, 24, 11, 334, 647, 447, 209, 117, 59, 27, 13, 834, 1617, 1117, 522, 292, 147, 67, 32, 15, 2084, 4042, 2792, 1304, 729, 367, 167, 79, 37, 16, 5209, 10104, 6979
Offset: 1
Examples
Northwest corner: 1....2....4.....9.....22 3....7....17...42....104 5....12...29...72....179 6....14...34...84....209 8....19...47...117...292 10...24...59...147...367
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050 (first 100 antidiagonals, flattened)
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=2; b=4; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A047211 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191730 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191730 *)
Comments