A191722 Dispersion of A008851, (numbers >1 and congruent to 0 or 1 mod 5), by antidiagonals.
1, 5, 2, 15, 6, 3, 40, 16, 10, 4, 101, 41, 26, 11, 7, 255, 105, 66, 30, 20, 8, 640, 265, 166, 76, 51, 21, 9, 1601, 665, 416, 191, 130, 55, 25, 12, 4005, 1665, 1041, 480, 326, 140, 65, 31, 13, 10015, 4165, 2605, 1201, 816, 351, 165, 80, 35, 14, 25040, 10415
Offset: 1
Examples
Northwest corner: 1....5....15...40...101 2....6....16...41...105 3....10...26...66...166 4....11...30...76...191 7....20...51...130..326 8....21...55...140..351
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=5; b=6; m[n_]:=If[Mod[n,2]==0,1,0]; f[n_]:=a*m[n+1]+b*m[n]+5*Floor[(n-1)/2] Table[f[n], {n, 1, 30}] (* A008851 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191722 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191722 *)
Comments