A191733 Dispersion of A047206, (numbers >1 and congruent to 1 or 3 or 4 mod 5), by antidiagonals.
1, 3, 2, 6, 4, 5, 11, 8, 9, 7, 19, 14, 16, 13, 10, 33, 24, 28, 23, 18, 12, 56, 41, 48, 39, 31, 21, 15, 94, 69, 81, 66, 53, 36, 26, 17, 158, 116, 136, 111, 89, 61, 44, 29, 20, 264, 194, 228, 186, 149, 103, 74, 49, 34, 22, 441, 324, 381, 311, 249, 173, 124, 83
Offset: 1
Examples
Northwest corner: 1....3....6....11...19 2....4....8....14...24 5....9....16...28...48 7....13...23...39...66 10...18...31...53...89 12...21...36...61...103
Links
- Ivan Neretin, Table of n, a(n) for n = 1..5050
Programs
-
Mathematica
(* Program generates the dispersion array t of the increasing sequence f[n] *) r = 40; r1 = 12; c = 40; c1 = 12; a=3; b=4; c2=6; m[n_]:=If[Mod[n,3]==0,1,0]; f[n_]:=a*m[n+2]+b*m[n+1]+c2*m[n]+5*Floor[(n-1)/3] Table[f[n], {n, 1, 30}] (* A047206 *) mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]] rows = {NestList[f, 1, c]}; Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]]; TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191733 *) Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191733 *)
Comments