A191743 Smallest numbers with a given factorization pattern in their sequence of divisors.
1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 60, 64, 72, 80, 84, 88, 90, 96, 100, 108, 120, 126, 128, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 210, 216, 220, 240, 252, 256, 264, 270, 272, 280, 288, 294, 300, 312, 315, 320, 324, 330
Offset: 1
Keywords
Examples
The factors of any prime p are 1,p, so this is the factorization pattern for all primes. The first prime, 2, is thus in the sequence, and no other primes are. Semiprimes have either the pattern 1,p,p^2 or 1,p,q,p*q, so the semiprimes in this sequence are the first instances of each of these, respectively 4 and 6. For numbers which are the product of the square of a prime and a different prime (A054753), there are three possible patterns: 1,p,q,p^2,p*q,p^2*q, 1,p,q,p*q,q^2,p*q^2, and 1,p,p^2,q,p*q,p*q^2; the exemplars in the sequence are 12, 18, and 20 respectively.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z}, z = Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[[1]] /. z)^#[[2]]) & /@ FactorInteger[#]) & /@ Divisors[n]]]; A = <||>; L={}; Do[k = f[n]; If[! KeyExistsQ[A, k], AppendTo[L, n]; A[k] = 1], {n, 330}]; L (* Giovanni Resta, Jul 20 2017 *)
-
PARI
vecfnd(v, x)={ for(k=1, #v, if(v[k]==x, return(k))); return(0); } vecfndn(v, x, n)={ for(k=1, n, if(v[k]==x, return(k))); return(0); } factfmt(k, ps)= { local(r, fm); r=""; fm=factor(k); for(i=1, matsize(fm)[1], if(i>1, r=Str(r"*")); r=Str(r, vecfnd(ps, fm[i, 1])); if(fm[i, 2]>1, r=Str(r"^"fm[i, 2])) ); return(r); } /* end factfmt() */ factpatt(n)= { local(ps, ds, r); r=""; ps=factor(n)[, 1]~; ds=divisors(n); for(k=1, #ds, if(k>1, r=Str(r", ")); r=concat(r, factfmt(ds[k], ps))); return(r); } /* end factpatt() */ al(n)= { local(k, r, st, m, pt); k=1; r=vector(n); st=vector(n); while(m
Comments