cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A025487 Least integer of each prime signature A124832; also products of primorial numbers A002110.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1

Views

Author

Keywords

Comments

All numbers of the form 2^k1*3^k2*...*p_n^k_n, where k1 >= k2 >= ... >= k_n, sorted.
A111059 is a subsequence. - Reinhard Zumkeller, Jul 05 2010
Choie et al. (2007) call these "Hardy-Ramanujan integers". - Jean-François Alcover, Aug 14 2014
The exponents k1, k2, ... can be read off Abramowitz & Stegun p. 831, column labeled "pi".
For all such sequences b for which it holds that b(n) = b(A046523(n)), the sequence which gives the indices of records in b is a subsequence of this sequence. For example, A002182 which gives the indices of records for A000005, A002110 which gives them for A001221 and A000079 which gives them for A001222. - Antti Karttunen, Jan 18 2019
The prime signature corresponding to a(n) is given in row n of A124832. - M. F. Hasler, Jul 17 2019

Examples

			The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
		

Crossrefs

Subsequence of A055932, A191743, and A324583.
Cf. A085089, A101296 (left inverses).
Equals range of values taken by A046523.
Cf. A178799 (first differences), A247451 (squarefree kernel), A146288 (number of divisors).
Rearrangements of this sequence include A036035, A059901, A063008, A077569, A085988, A086141, A087443, A108951, A181821, A181822, A322827, A329886, A329887.
Cf. also array A124832 (row n = prime signature of a(n)) and A304886, A307056.

Programs

  • Haskell
    import Data.Set (singleton, fromList, deleteFindMin, union)
    a025487 n = a025487_list !! (n-1)
    a025487_list = 1 : h [b] (singleton b) bs where
       (_ : b : bs) = a002110_list
       h cs s xs'@(x:xs)
         | m <= x    = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
         | otherwise = x : h (x:cs) (s  `union` fromList (map (* x) (x:cs))) xs
         where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Apr 06 2013
    
  • Maple
    isA025487 := proc(n)
        local pset,omega ;
        pset := sort(convert(numtheory[factorset](n),list)) ;
        omega := nops(pset) ;
        if op(-1,pset) <> ithprime(omega) then
            return false;
        end if;
        for i from 1 to omega-1 do
            if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A025487 := proc(n)
        option remember ;
        local a;
        if n = 1 then
            1 ;
        else
            for a from procname(n-1)+1 do
                if isA025487(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
  • Mathematica
    PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
    (* Second program: generate all terms m <= A002110(n): *)
    f[n_] := {{1}}~Join~
      Block[{lim = Product[Prime@ i, {i, n}],
       ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
       dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
       Map[Block[{w = #, k = 1},
          Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
            Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
             Do[
              If[# < lim,
                 Sow[#]; k = 1,
                 If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
                 If[k == 1,
                   MapAt[# + 1 &, w, k],
                   PadLeft[#, Length@ w, First@ #] &@
                     Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
               {i, Infinity}] ][[-1]]
    ] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
  • PARI
    isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    factfollow(n)={local(fm, np, n2);
      fm=factor(n); np=matsize(fm)[1];
      if(np==0,return([2]));
      n2=n*nextprime(fm[np,1]+1);
      if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
    
  • PARI
    is(n) = {if(n==1, return(1)); my(f = factor(n));  f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
    
  • PARI
    upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
    
  • PARI
    \\ For fast generation of large number of terms, use this program:
    A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
    A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
    v025487 = A025487list(101);
    A025487(n) = v025487[n];
    for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
    
  • Sage
    def sharp_primorial(n): return sloane.A002110(prime_pi(n))
    N = 2310
    nmax = 2^floor(log(N,2))
    sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
    # Giuseppe Coppoletta, Jan 26 2015

Formula

What can be said about the asymptotic behavior of this sequence? - Franklin T. Adams-Watters, Jan 06 2010
Hardy & Ramanujan prove that there are exp((2 Pi + o(1))/sqrt(3) * sqrt(log x/log log x)) members of this sequence up to x. - Charles R Greathouse IV, Dec 05 2012
From Antti Karttunen, Jan 18 & Dec 24 2019: (Start)
A085089(a(n)) = n.
A101296(a(n)) = n [which is the first occurrence of n in A101296, and thus also a record.]
A001221(a(n)) = A061395(a(n)) = A061394(n).
A007814(a(n)) = A051903(a(n)) = A051282(n).
a(A101296(n)) = A046523(n).
a(A306802(n)) = A002182(n).
a(n) = A108951(A181815(n)) = A329900(A181817(n)).
If A181815(n) is odd, a(n) = A283980(a(A329904(n))), otherwise a(n) = 2*a(A329904(n)).
(End)
Sum_{n>=1} 1/a(n) = Product_{n>=1} 1/(1 - 1/A002110(n)) = A161360. - Amiram Eldar, Oct 20 2020

Extensions

Offset corrected by Matthew Vandermast, Oct 19 2008
Minor correction by Charles R Greathouse IV, Sep 03 2010

A066680 Badly sieved numbers: as in the Sieve of Eratosthenes multiples of unmarked numbers p are marked, but only up to p^2.

Original entry on oeis.org

2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 23, 27, 29, 30, 31, 37, 41, 43, 45, 47, 50, 53, 59, 61, 63, 67, 70, 71, 73, 75, 79, 80, 83, 89, 97, 98, 101, 103, 105, 107, 109, 112, 113, 125, 127, 128, 131, 137, 139, 147, 149, 151, 154, 157, 163
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 31 2001

Keywords

Comments

A099104(a(n)) = 1.
a(A207432(n)) = A000040(n). - Reinhard Zumkeller, Feb 17 2012
Obviously all primes and cubes of primes are in the sequence, while squares of primes are not. In fact, A000225 tells us which exponents prime powers in the sequence will exhibit.
But where it gets really interesting is in what happens to the Achilles numbers: the smallest badly sieved numbers that are also Achilles numbers are 864 and 972. - Alonso del Arte, Feb 21 2012
From Peter Munn, Aug 09 2019: (Start)
The factorization pattern of a number's divisors (as defined in A191743) determines whether a number is a term.
There are no semiprimes in the sequence, and a 3-almost prime is present if and only if its largest prime factor is less than its square root. The first term that is a 4-almost prime is 220.
The effect of this sieve can be compared against the A270877 trapezoidal sieve. Each unmarked number k marks k-1 numbers in both sieves; but the largest number marked by k in this sieve is k^2, about twice the largest number marked by k in A270877 (the triangular number T_k = k(k+1)/2). The relative densities early in the two sequences are illustrated by a(10) = 18 < A270877(10) = 19, a(100) = 312 > A270877(100) = 268, a(1000) = 4297 > A270877(1000) = 2894. (End)

Examples

			For 2, the first unmarked number, there is only one multiple <= 4=2^2:
giving 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
for 3, the next unmarked number, we mark 6=2*3 and 9=3*3
giving 2 3 [4] 5 [6] 7 8 [9] 10 11 12 13 14 15 16 17 18 19 20 ...
for 5, the next unmarked number, we mark 10=2*5, 15=3*5, 20=4*5 and 25=5*5
giving 2 3 [4] 5 [6] 7 8 [9] [10] 11 12 13 14 [15] 16 17 18 19 [20] ... and so on.
		

Crossrefs

A066681, A066682, A066683, A099042, A099043, A207432 have analysis of this sequence.
Cf. A056875, A075362, A099104 (characteristic function), A191743.
Sequences generated by a closely related sieving process: A000040 (also a subsequence), A026424, A270877.

Programs

  • Haskell
    a066680 n = a066680_list !! (n-1)
    a066680_list = s [2..] where
       s (b:bs) = b : s [x | x <- bs, x > b ^ 2 || mod x b > 0]
    -- Reinhard Zumkeller, Feb 17 2012
  • Mathematica
    A099104[1] = 0; A099104[n_] := A099104[n] = Product[If[n > d^2, 1, 1 - A099104[d]], {d, Select[ Range[n-1], Mod[n, #] == 0 &]}]; Select[ Range[200], A099104[#] == 1 &] (* Jean-François Alcover, Feb 15 2012 *)
    max = 200; badPrimes = Range[2, max]; len = max; iter = 1; While[iter <= len, curr = badPrimes[[iter]]; badPrimes = Complement[badPrimes, Range[2, curr]curr]; len = Length[badPrimes]; iter++]; badPrimes (* Alonso del Arte, Feb 21 2012 *)

A290110 a(n) = the discovery rank of the factorization pattern of the sequence of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 5, 9, 2, 11, 2, 12, 4, 4, 4, 13, 2, 4, 4, 14, 2, 15, 2, 9, 6, 4, 2, 16, 3, 8, 4, 9, 2, 17, 4, 14, 4, 4, 2, 18, 2, 4, 6, 19, 4, 15, 2, 9, 4, 11, 2, 20, 2, 4, 8, 9, 4, 15, 2, 21, 7, 4, 2, 22, 4, 4, 4, 23, 2, 24, 4, 9, 4, 4, 4, 25, 2, 8, 9, 26, 2, 15, 2, 23, 11
Offset: 1

Views

Author

Luc Rousseau, Jul 19 2017

Keywords

Comments

The definition for the factorization pattern of the sequence of divisors of a number n is the same as in sequence A191743. Let's use the abbreviation FPSD. One can generate a list of distinct FPSD by trying all integers, 1, 2, 3, ..., and ignoring duplicates. a(n) is the index of the FPSD of n in this list.
From Antti Karttunen, Mar 07 & 08 2018: (Start)
This is NOT restricted growth sequence transform of A297174, but instead A300250 is, from which this differs for the first time at n=858, where a(858) = 115, while A300250(858) = 75.
This gives a finer partitioning of natural numbers than A300250, and indeed we have:
For all i, j:
a(i) = a(j) => A300250(i) = A300250(j) => A101296(i) = A101296(j).
(End)

Examples

			The divisors of 17 are {1, 17}. They follow the pattern {1, p} which is pattern number 2 in discovery order. a(17)=2.
The divisors of 28 are {1, 2, 4, 7, 14, 28}. They follow the pattern {1, p, p^2, q, p*q, p^2*q}, which is pattern number 9 in discovery order. a(28)=9.
From _Michael De Vlieger_ and _Antti Karttunen_, Mar 07 & 08 2018: (Start)
Divisors of 462 = 2*3*7*11 (p=2, q=3, r=7, s=11) are 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462, thus the factorization patterns in the order of increasing divisors are: 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs.
Divisors of 546 = 2*3*7*13 (p=2, q=3, r=7, s=13) are 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546, thus the factorization patterns are 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs, that is, identical with those of 462, thus a(546) = a(462).
Divisors of 858 = 2*3*11*13 (p=2, q=3, r=11, s=13) are 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858, thus the factorization patterns are 1, p, q, pq, r, s, pr, ps, qr, qs, pqr, pqs, rs, prs, qrs and pqrs. At the 8th divisor (26), we see that pattern ps is different from pattern qr of the 8th divisor of 546 (21), thus a(858) is not equal to a(546).
(End)
		

Crossrefs

Programs

  • Mathematica
    FactorizationPattern[n_] := Module[
      {pn, fd, f1, f2, d},
      pn = First /@ FactorInteger[n];
      fd = FactorInteger[ReplacePart[Divisors[n], 1 -> {}]];
      f1 = (ReplacePart[#,
          1 -> FromCharacterCode[
            111 + First[Position[pn, First[#]]]]]) &;
      f2 = (f1 /@ #) &;
      fd = f2 /@ fd;
      f1 = (Power[First[#], Last[#]]) &;
      For[i = 1, i <= Length[fd], i++,
       d = fd[[i]];
       For[j = 1, j <= Length[d], j++,d[[j]] = f1[d[[j]]];];
       d = Product[x, {x, d}];
       fd[[i]] = d;
      ];
      fd
    ]
    ListFactorizationPatternIndices[n_] := Module[
      {mem, k, i, p, a},
      mem = Association[];
      a = {}; k = 0;
      For[i = 1, i \[LessSlantEqual] n, i++,
       p = FactorizationPattern[i];
       If[KeyExistsQ[mem, p],,
        k++;
        mem = Append[mem, p -> k]
       ];
       a = Append[a, mem[p]]
      ];
      a
    ]
    ListFactorizationPatternIndices[80]
    (* or *)
    f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z,x}, z= Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[[1]] /. z)^#[[2]]) & /@ FactorInteger@ #) & /@ Divisors[n]]]; A = <||>; Table[k = f[n]; If[ KeyExistsQ[A, k], A[k], t = 1 + Length@A; A[k] = t], {n, 80}] (* Giovanni Resta, Jul 20 2017 *)

Formula

A191743(n) = MIN(k such that a(k)=n).
a(p) = 2, for p prime;
a(p^2) = 3, for p prime;
a(p*q) = 4, for p, q distinct primes.

Extensions

More terms from Michael De Vlieger and Antti Karttunen, Mar 07 2018

A366250 Numbers k that are not powerful and do not have a strictly superior squarefree divisor.

Original entry on oeis.org

48, 54, 96, 160, 162, 192, 224, 250, 320, 375, 384, 405, 448, 486, 567, 640, 686, 704, 768, 832, 896, 960, 1029, 1080, 1200, 1215, 1250, 1280, 1350, 1408, 1440, 1458, 1500, 1536, 1620, 1664, 1701, 1715, 1792, 1875, 1920, 2016, 2058, 2160, 2176, 2250, 2268, 2352
Offset: 1

Views

Author

Peter Munn and Michael De Vlieger, Feb 08 2024

Keywords

Comments

A number k does not have a strictly superior squarefree divisor if and only if k is at least as large as the square of rad(k), the largest squarefree divisor of k. All powerful numbers (A001694) have this property. This sequence lists the other such numbers.
Let rad(k) = A007947(k), the largest squarefree divisor, i.e., the squarefree kernel of k. A341645 lists the numbers without a strictly superior squarefree divisor.
A341645 = { k : rad(k) <= k/rad(k) } = { k : A007947(k) <= A003557(k) }, and it is evident that rad(k) <= k/rad(k) is true for powerful k, that is, k in A001694.
Since A001694 contains A001597, the above is also true for perfect powers k; A001597 is a proper subset of A341645.
This sequence contains "weak" k (in A052485) such that rad(k) < k/rad(k).
The presence of a number, k, in this sequence depends only upon A290110(k), i.e., upon the factorization pattern of its sequence of divisors as defined in A191743.
Let S = A006939 and let P = A002110. Almost all superprimorials are in this sequence: S \ {1, 2, 12, 360} is a proper subset. S(i) = S(i-1)*P(i), where S(i-1) = A003557(S(i)) and P(i) = rad(S(i)), and for i > 4, S(i-1) > P(i). Since prime(i) | S(i) but prime(i)^2 does not divide S(i), S(i) is not powerful. Corollary: almost all superprimorials are in A341645, since this sequence is a proper subset of A341645.

Examples

			Let b(n) = A364702(n).
a(1) = b(1) = 48 since rad(48) < 48/rad(48), 6 < 8.
b(2) = 50 is not in the sequence since rad(50) > 50/rad(50), 10 > 5.
a(2) = b(3) = 54 since 6 < 9, etc.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2400], And[! AllTrue[#2[[All, -1]], # > 1 &], #1 >= Apply[Times, #2[[All, 1]]^2]] & @@ {#, FactorInteger[#]} &]
  • PARI
    isok(m) = if (!ispowerful(m), my(d=divisors(m)); #select(x->(issquarefree(x) && (x^2>m)), d) == 0); \\ Michel Marcus, Feb 11 2024

Formula

Set difference of A341645 and A001694.
Intersection of A341645 and A364702 where the latter is a proper subset of A052485.
Sequence contains infinite intersections of A052485 and { k = m*s : s is squarefree, rad(m) | s, 1 < s < m }.
{a(n)} = union of { k = s*m : s > 1 is squarefree, rad(m) | s, m >= s, k is not powerful }.
{a(n)} = { k in A364702 : k >= rad(k)^2 }.

A319070 a(n) is the area of the surface made of the rectangles with vertices (d, n/d), (D, n/d), (D, n/D), (d, n/D) for all (d, D), pair of consecutive divisors of n.

Original entry on oeis.org

0, 1, 4, 4, 16, 7, 36, 12, 24, 19, 100, 17, 144, 39, 44, 32, 256, 33, 324, 41, 72, 103, 484, 40, 160, 147, 108, 65, 784, 57, 900, 80, 152, 259, 228, 66, 1296, 327, 204, 93, 1600, 99, 1764, 137, 160, 487, 2116, 92, 504, 165, 332, 185, 2704, 135, 388
Offset: 1

Views

Author

Luc Rousseau, Sep 09 2018

Keywords

Examples

			The divisors of n=12 are {1, 2, 3, 4, 6, 12}. The widths of the rectangles from the definition are obtained by difference: {1, 1, 1, 2, 6}. By symmetry, their heights are the same, but in reverse order: {6, 2, 1, 1, 1}. The sought total area is the sum of products width*height of each rectangle, in other words it is the dot product 1*6 + 1*2 + 1*1 + 2*1 + 6*1. Result: 17. So, a(12)=17.
		

Crossrefs

Cf. A191743, A290110 (introducing factorization patterns of sequences of divisors).
Cf. A165900 (the Fibonacci polynomial).

Programs

  • Mathematica
    a[n_] := Module[{x = Differences[Divisors[n]]}, Plus @@ (x*Reverse[x])];
    Table[a[n], {n, 1, 55}]
  • PARI
    arect(n, d, D) = (D-d)*(n/d - n/D);
    a(n) = my(vd = divisors(n)); sum(k=1, #vd-1, arect(n, vd[k], vd[k+1])); \\ Michel Marcus, Oct 28 2018

Formula

a(1) = 0.
a(p) = (p-1)^2 for p a prime number.
a(p^k) = (p-1)^2*k*p^(k-1) for p^k a prime power.
a(p*q) = 2*(p-1)^2*q + (q-p)^2 for p and q primes (p < q).
a(n) = (n/2 - 1)^2 + 3 if n=2*p with p a prime greater than 2.
a(n) = (n/p + F(p-1))^2 + p^2 - F(p-1)^2 if n = p*q, p < q primes; where F denotes the Fibonacci polynomial, F(x) = x^2 - x - 1 (see A165900).
For more complex factorization patterns of n, the formula depends on the factorization pattern of the sequence of divisors of n (see A191743 or A290110), e.g.:
a(p^2*q) = 4*p*q*(p-1)^2 + (q-p^2)^2 if 1 < p < p^2 < q < p*q < p^2*q,
but
a(p^2*q) = 2*p*q*(p-1)^2 + 2*p*(q-p)^2 + (p^2-q)^2 if 1 < p < q < p^2 < p*q < p^2*q.
a(n) = Sum_{i=1..tau(n)-1} (d_[tau(n)-i+1] - d_[tau(n)-i])*(d_[i+1] - d_[i]), where {d_i}, i=1..tau(n) is the increasing sequence of divisors of n. - Ridouane Oudra, Oct 17 2021

A355474 Square array T(m,n) = Card({ (i, j) : 1 <= i <= m, 1 <= j <= min(n, i), GCD(i, j) = 1 }), read by antidiagonals upwards.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 5, 4, 2, 1, 6, 7, 6, 4, 2, 1, 7, 8, 9, 6, 4, 2, 1, 8, 10, 10, 10, 6, 4, 2, 1, 9, 11, 13, 11, 10, 6, 4, 2, 1, 10, 13, 15, 15, 12, 10, 6, 4, 2, 1, 11, 14, 17, 17, 17, 12, 10, 6, 4, 2, 1, 12, 16, 19, 20, 20, 18, 12, 10, 6, 4, 2, 1
Offset: 1

Views

Author

Luc Rousseau, Jul 03 2022

Keywords

Comments

Also the number of regions in the 0 < x < y sector of the plane that are delimited by the lines with equations i*x + j*y = 0, where i and j are integers, not both 0, and |i| <= m, |j| <= n. This remark is motivated by Factorization Patterns (FPs) and Factorization Patterns of Sequences of Divisors (FPSD) concerns, as defined in A191743 and A290110. This is the case k=2 of a more general problem where k is omega(z)=A001221(z), the number of distinct primes dividing z, for which we would define T(n1,n2,...,nk) instead of T(m,n). The idea is the following: two numbers (e.g., 12 and 20) can have the same FP (p^2*q) without having the same FPSD ([1 < p < q < p^2 < p*q < p^2*q] != [1 < p < p^2 < q < p*q < p^2*q]). T(m,n) tells how many distinct FPSDs share the same FP of the p^m*q^n form. See the illustration for (m,n) = (2,1), section Links.

Examples

			Let m=2 and n=1. There are exactly two lattice points (i, j) that satisfy 1 <= i <= 2 and 1 <= j <= min(1, i) and GCD(i, j) = 1, namely (1, 1) and (2, 1). So T(2,1) = 2.
Array begins:
  m\n|  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
  ---+----------------------------------------------------
   1 |  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2 |  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2
   3 |  3  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4  4
   4 |  4  5  6  6  6  6  6  6  6  6  6  6  6  6  6  6  6
   5 |  5  7  9 10 10 10 10 10 10 10 10 10 10 10 10 10 10
   6 |  6  8 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12
   7 |  7 10 13 15 17 18 18 18 18 18 18 18 18 18 18 18 18
   8 |  8 11 15 17 20 21 22 22 22 22 22 22 22 22 22 22 22
   9 |  9 13 17 20 24 25 27 28 28 28 28 28 28 28 28 28 28
  10 | 10 14 19 22 26 27 30 31 32 32 32 32 32 32 32 32 32
  11 | 11 16 22 26 31 33 37 39 41 42 42 42 42 42 42 42 42
  12 | 12 17 23 27 33 35 40 42 44 45 46 46 46 46 46 46 46
  13 | 13 19 26 31 38 41 47 50 53 55 57 58 58 58 58 58 58
  14 | 14 20 28 33 41 44 50 53 57 59 62 63 64 64 64 64 64
  15 | 15 22 30 36 44 47 54 58 62 64 68 69 71 72 72 72 72
  16 | 16 23 32 38 47 50 58 62 67 69 74 75 78 79 80 80 80
  17 | 17 25 35 42 52 56 65 70 76 79 85 87 91 93 95 96 96
		

Crossrefs

Programs

  • PARI
    T(m, n) = sum(i=1, m, sum(j=1, min(n, i), gcd(i, j)==1))
    for(d=2,10,for(n=1,d-1,my(m=d-n);print1(T(m,n),", ")))

Formula

T(n,n) = A002088(n).
Showing 1-6 of 6 results.