A025487
Least integer of each prime signature A124832; also products of primorial numbers A002110.
Original entry on oeis.org
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72, 96, 120, 128, 144, 180, 192, 210, 216, 240, 256, 288, 360, 384, 420, 432, 480, 512, 576, 720, 768, 840, 864, 900, 960, 1024, 1080, 1152, 1260, 1296, 1440, 1536, 1680, 1728, 1800, 1920, 2048, 2160, 2304, 2310
Offset: 1
The first few terms are 1, 2, 2^2, 2*3, 2^3, 2^2*3, 2^4, 2^3*3, 2*3*5, ...
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..10001 (first 291 terms from Will Nicholes)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
- Kevin Broughan, Equivalents of the Riemann Hypothesis, Vol. 1: Arithmetic Equivalents, Cambridge University Press, 2017. See section 8.2, "Hardy-Ramanujan Numbers".
- YoungJu Choie, Nicolas Lichiardopol, Pieter Moree and Patrick Solé, On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol. 19, No. 2 (2007), pp. 357-372. See section 5, p. 367.
- Asaf Cohen Antonir and Asaf Shapira, An Elementary Proof of a Theorem of Hardy and Ramanujan (2022). arXiv:2207.09410 [math.NT]
- Michael De Vlieger, Relations of A025487 to A002110, A002182, and A002201.
- Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, pp. 9-10.
- G. H. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. London Math. Soc, Ser. 2, Vol. 16 (1917), pp. 112-132. Also published in the book Collected Papers of Srinivasa Ramanujan, Chelsea, 1962, pages 245-261.
- Jeffery Kline, On the eigenstructure of sparse matrices related to the prime number theorem, Linear Algebra and its Applications (2020) Vol. 584, 409-430.
- L. B. Richmond, Asymptotic results for partitions (I) and the distribution of certain integers, Journal of Number Theory, Vol. 8, No. 4 (1976), pp. 372-389. See page 388.
Cf.
A025488,
A051282,
A036041,
A051466,
A061394,
A124832,
A161360,
A166469,
A181815,
A181817,
A283980,
A306802,
A322584,
A322585 (characteristic function),
A329897,
A329898,
A329899,
A329900,
A329904,
A330683.
Equals range of values taken by
A046523.
Subsequences of this sequence include:
A000079,
A000142,
A000400,
A001013,
A001813,
A002110,
A002182,
A005179,
A006939,
A025527,
A056836,
A061742,
A064350,
A066120,
A087980,
A097212,
A097213,
A111059,
A119840,
A119845,
A126098,
A129912,
A140999,
A166338,
A166470,
A166472,
A166473,
A166475,
A167448,
A168262,
A168263,
A168264,
A179215,
A181555,
A181804,
A181806,
A181809,
A181818,
A181822,
A181823,
A181824,
A181825,
A181826,
A181827,
A182763,
A182862,
A182863,
A212170,
A220264,
A220423,
A250269,
A250270,
A260633,
A266047,
A284456,
A300357,
A304938,
A329894,
A330687; also
A037019 and
A330681 (when sorted), possibly also
A289132.
Rearrangements of this sequence include
A036035,
A059901,
A063008,
A077569,
A085988,
A086141,
A087443,
A108951,
A181821,
A181822,
A322827,
A329886,
A329887.
-
import Data.Set (singleton, fromList, deleteFindMin, union)
a025487 n = a025487_list !! (n-1)
a025487_list = 1 : h [b] (singleton b) bs where
(_ : b : bs) = a002110_list
h cs s xs'@(x:xs)
| m <= x = m : h (m:cs) (s' `union` fromList (map (* m) cs)) xs'
| otherwise = x : h (x:cs) (s `union` fromList (map (* x) (x:cs))) xs
where (m, s') = deleteFindMin s
-- Reinhard Zumkeller, Apr 06 2013
-
isA025487 := proc(n)
local pset,omega ;
pset := sort(convert(numtheory[factorset](n),list)) ;
omega := nops(pset) ;
if op(-1,pset) <> ithprime(omega) then
return false;
end if;
for i from 1 to omega-1 do
if padic[ordp](n,ithprime(i)) < padic[ordp](n,ithprime(i+1)) then
return false;
end if;
end do:
true ;
end proc:
A025487 := proc(n)
option remember ;
local a;
if n = 1 then
1 ;
else
for a from procname(n-1)+1 do
if isA025487(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A025487(n),n=1..100) ; # R. J. Mathar, May 25 2017
-
PrimeExponents[n_] := Last /@ FactorInteger[n]; lpe = {}; ln = {1}; Do[pe = Sort@PrimeExponents@n; If[ FreeQ[lpe, pe], AppendTo[lpe, pe]; AppendTo[ln, n]], {n, 2, 2350}]; ln (* Robert G. Wilson v, Aug 14 2004 *)
(* Second program: generate all terms m <= A002110(n): *)
f[n_] := {{1}}~Join~
Block[{lim = Product[Prime@ i, {i, n}],
ww = NestList[Append[#, 1] &, {1}, n - 1], dec},
dec[x_] := Apply[Times, MapIndexed[Prime[First@ #2]^#1 &, x]];
Map[Block[{w = #, k = 1},
Sort@ Prepend[If[Length@ # == 0, #, #[[1]]],
Product[Prime@ i, {i, Length@ w}] ] &@ Reap[
Do[
If[# < lim,
Sow[#]; k = 1,
If[k >= Length@ w, Break[], k++]] &@ dec@ Set[w,
If[k == 1,
MapAt[# + 1 &, w, k],
PadLeft[#, Length@ w, First@ #] &@
Drop[MapAt[# + Boole[i > 1] &, w, k], k - 1] ]],
{i, Infinity}] ][[-1]]
] &, ww]]; Sort[Join @@ f@ 13] (* Michael De Vlieger, May 19 2018 *)
-
isA025487(n)=my(k=valuation(n,2),t);n>>=k;forprime(p=3,default(primelimit),t=valuation(n,p);if(t>k,return(0),k=t);if(k,n/=p^k,return(n==1))) \\ Charles R Greathouse IV, Jun 10 2011
-
factfollow(n)={local(fm, np, n2);
fm=factor(n); np=matsize(fm)[1];
if(np==0,return([2]));
n2=n*nextprime(fm[np,1]+1);
if(np==1||fm[np,2]Franklin T. Adams-Watters, Dec 01 2011 */
-
is(n) = {if(n==1, return(1)); my(f = factor(n)); f[#f~, 1] == prime(#f~) && vecsort(f[, 2],,4) == f[, 2]} \\ David A. Corneth, Feb 14 2019
-
upto(Nmax)=vecsort(concat(vector(logint(Nmax,2),n,select(t->t<=Nmax,if(n>1,[factorback(primes(#p),Vecrev(p)) || p<-partitions(n)],[1,2]))))) \\ M. F. Hasler, Jul 17 2019
-
\\ For fast generation of large number of terms, use this program:
A283980(n) = {my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, 6, nextprime(p+1))^e)}; \\ From A283980
A025487list(e) = { my(lista = List([1, 2]), i=2, u = 2^e, t); while(lista[i] != u, if(2*lista[i] <= u, listput(lista,2*lista[i]); t = A283980(lista[i]); if(t <= u, listput(lista,t))); i++); vecsort(Vec(lista)); }; \\ Returns a list of terms up to the term 2^e.
v025487 = A025487list(101);
A025487(n) = v025487[n];
for(n=1,#v025487,print1(A025487(n), ", ")); \\ Antti Karttunen, Dec 24 2019
-
def sharp_primorial(n): return sloane.A002110(prime_pi(n))
N = 2310
nmax = 2^floor(log(N,2))
sorted([j for j in (prod(sharp_primorial(t[0])^t[1] for k, t in enumerate(factor(n))) for n in (1..nmax)) if j <= N])
# Giuseppe Coppoletta, Jan 26 2015
A066680
Badly sieved numbers: as in the Sieve of Eratosthenes multiples of unmarked numbers p are marked, but only up to p^2.
Original entry on oeis.org
2, 3, 5, 7, 8, 11, 12, 13, 17, 18, 19, 23, 27, 29, 30, 31, 37, 41, 43, 45, 47, 50, 53, 59, 61, 63, 67, 70, 71, 73, 75, 79, 80, 83, 89, 97, 98, 101, 103, 105, 107, 109, 112, 113, 125, 127, 128, 131, 137, 139, 147, 149, 151, 154, 157, 163
Offset: 1
For 2, the first unmarked number, there is only one multiple <= 4=2^2:
giving 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...
for 3, the next unmarked number, we mark 6=2*3 and 9=3*3
giving 2 3 [4] 5 [6] 7 8 [9] 10 11 12 13 14 15 16 17 18 19 20 ...
for 5, the next unmarked number, we mark 10=2*5, 15=3*5, 20=4*5 and 25=5*5
giving 2 3 [4] 5 [6] 7 8 [9] [10] 11 12 13 14 [15] 16 17 18 19 [20] ... and so on.
Sequences generated by a closely related sieving process:
A000040 (also a subsequence),
A026424,
A270877.
-
a066680 n = a066680_list !! (n-1)
a066680_list = s [2..] where
s (b:bs) = b : s [x | x <- bs, x > b ^ 2 || mod x b > 0]
-- Reinhard Zumkeller, Feb 17 2012
-
A099104[1] = 0; A099104[n_] := A099104[n] = Product[If[n > d^2, 1, 1 - A099104[d]], {d, Select[ Range[n-1], Mod[n, #] == 0 &]}]; Select[ Range[200], A099104[#] == 1 &] (* Jean-François Alcover, Feb 15 2012 *)
max = 200; badPrimes = Range[2, max]; len = max; iter = 1; While[iter <= len, curr = badPrimes[[iter]]; badPrimes = Complement[badPrimes, Range[2, curr]curr]; len = Length[badPrimes]; iter++]; badPrimes (* Alonso del Arte, Feb 21 2012 *)
A290110
a(n) = the discovery rank of the factorization pattern of the sequence of divisors of n.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 8, 2, 9, 4, 4, 2, 10, 3, 4, 5, 9, 2, 11, 2, 12, 4, 4, 4, 13, 2, 4, 4, 14, 2, 15, 2, 9, 6, 4, 2, 16, 3, 8, 4, 9, 2, 17, 4, 14, 4, 4, 2, 18, 2, 4, 6, 19, 4, 15, 2, 9, 4, 11, 2, 20, 2, 4, 8, 9, 4, 15, 2, 21, 7, 4, 2, 22, 4, 4, 4, 23, 2, 24, 4, 9, 4, 4, 4, 25, 2, 8, 9, 26, 2, 15, 2, 23, 11
Offset: 1
The divisors of 17 are {1, 17}. They follow the pattern {1, p} which is pattern number 2 in discovery order. a(17)=2.
The divisors of 28 are {1, 2, 4, 7, 14, 28}. They follow the pattern {1, p, p^2, q, p*q, p^2*q}, which is pattern number 9 in discovery order. a(28)=9.
From _Michael De Vlieger_ and _Antti Karttunen_, Mar 07 & 08 2018: (Start)
Divisors of 462 = 2*3*7*11 (p=2, q=3, r=7, s=11) are 1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462, thus the factorization patterns in the order of increasing divisors are: 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs.
Divisors of 546 = 2*3*7*13 (p=2, q=3, r=7, s=13) are 1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546, thus the factorization patterns are 1, p, q, pq, r, s, pr, qr, ps, qs, pqr, pqs, rs, prs, qrs and pqrs, that is, identical with those of 462, thus a(546) = a(462).
Divisors of 858 = 2*3*11*13 (p=2, q=3, r=11, s=13) are 1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858, thus the factorization patterns are 1, p, q, pq, r, s, pr, ps, qr, qs, pqr, pqs, rs, prs, qrs and pqrs. At the 8th divisor (26), we see that pattern ps is different from pattern qr of the 8th divisor of 546 (21), thus a(858) is not equal to a(546).
(End)
-
FactorizationPattern[n_] := Module[
{pn, fd, f1, f2, d},
pn = First /@ FactorInteger[n];
fd = FactorInteger[ReplacePart[Divisors[n], 1 -> {}]];
f1 = (ReplacePart[#,
1 -> FromCharacterCode[
111 + First[Position[pn, First[#]]]]]) &;
f2 = (f1 /@ #) &;
fd = f2 /@ fd;
f1 = (Power[First[#], Last[#]]) &;
For[i = 1, i <= Length[fd], i++,
d = fd[[i]];
For[j = 1, j <= Length[d], j++,d[[j]] = f1[d[[j]]];];
d = Product[x, {x, d}];
fd[[i]] = d;
];
fd
]
ListFactorizationPatternIndices[n_] := Module[
{mem, k, i, p, a},
mem = Association[];
a = {}; k = 0;
For[i = 1, i \[LessSlantEqual] n, i++,
p = FactorizationPattern[i];
If[KeyExistsQ[mem, p],,
k++;
mem = Append[mem, p -> k]
];
a = Append[a, mem[p]]
];
a
]
ListFactorizationPatternIndices[80]
(* or *)
f[n_] := If[n==1, 1, Block[{p = First /@ FactorInteger@n, z,x}, z= Table[p[[i]] -> x[i], {i, Length@p}]; Times @@ (((#[[1]] /. z)^#[[2]]) & /@ FactorInteger@ #) & /@ Divisors[n]]]; A = <||>; Table[k = f[n]; If[ KeyExistsQ[A, k], A[k], t = 1 + Length@A; A[k] = t], {n, 80}] (* Giovanni Resta, Jul 20 2017 *)
A366250
Numbers k that are not powerful and do not have a strictly superior squarefree divisor.
Original entry on oeis.org
48, 54, 96, 160, 162, 192, 224, 250, 320, 375, 384, 405, 448, 486, 567, 640, 686, 704, 768, 832, 896, 960, 1029, 1080, 1200, 1215, 1250, 1280, 1350, 1408, 1440, 1458, 1500, 1536, 1620, 1664, 1701, 1715, 1792, 1875, 1920, 2016, 2058, 2160, 2176, 2250, 2268, 2352
Offset: 1
Let b(n) = A364702(n).
a(1) = b(1) = 48 since rad(48) < 48/rad(48), 6 < 8.
b(2) = 50 is not in the sequence since rad(50) > 50/rad(50), 10 > 5.
a(2) = b(3) = 54 since 6 < 9, etc.
-
Select[Range[2, 2400], And[! AllTrue[#2[[All, -1]], # > 1 &], #1 >= Apply[Times, #2[[All, 1]]^2]] & @@ {#, FactorInteger[#]} &]
-
isok(m) = if (!ispowerful(m), my(d=divisors(m)); #select(x->(issquarefree(x) && (x^2>m)), d) == 0); \\ Michel Marcus, Feb 11 2024
A319070
a(n) is the area of the surface made of the rectangles with vertices (d, n/d), (D, n/d), (D, n/D), (d, n/D) for all (d, D), pair of consecutive divisors of n.
Original entry on oeis.org
0, 1, 4, 4, 16, 7, 36, 12, 24, 19, 100, 17, 144, 39, 44, 32, 256, 33, 324, 41, 72, 103, 484, 40, 160, 147, 108, 65, 784, 57, 900, 80, 152, 259, 228, 66, 1296, 327, 204, 93, 1600, 99, 1764, 137, 160, 487, 2116, 92, 504, 165, 332, 185, 2704, 135, 388
Offset: 1
The divisors of n=12 are {1, 2, 3, 4, 6, 12}. The widths of the rectangles from the definition are obtained by difference: {1, 1, 1, 2, 6}. By symmetry, their heights are the same, but in reverse order: {6, 2, 1, 1, 1}. The sought total area is the sum of products width*height of each rectangle, in other words it is the dot product 1*6 + 1*2 + 1*1 + 2*1 + 6*1. Result: 17. So, a(12)=17.
Cf.
A191743,
A290110 (introducing factorization patterns of sequences of divisors).
Cf.
A165900 (the Fibonacci polynomial).
-
a[n_] := Module[{x = Differences[Divisors[n]]}, Plus @@ (x*Reverse[x])];
Table[a[n], {n, 1, 55}]
-
arect(n, d, D) = (D-d)*(n/d - n/D);
a(n) = my(vd = divisors(n)); sum(k=1, #vd-1, arect(n, vd[k], vd[k+1])); \\ Michel Marcus, Oct 28 2018
A355474
Square array T(m,n) = Card({ (i, j) : 1 <= i <= m, 1 <= j <= min(n, i), GCD(i, j) = 1 }), read by antidiagonals upwards.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 4, 4, 2, 1, 5, 5, 4, 2, 1, 6, 7, 6, 4, 2, 1, 7, 8, 9, 6, 4, 2, 1, 8, 10, 10, 10, 6, 4, 2, 1, 9, 11, 13, 11, 10, 6, 4, 2, 1, 10, 13, 15, 15, 12, 10, 6, 4, 2, 1, 11, 14, 17, 17, 17, 12, 10, 6, 4, 2, 1, 12, 16, 19, 20, 20, 18, 12, 10, 6, 4, 2, 1
Offset: 1
Let m=2 and n=1. There are exactly two lattice points (i, j) that satisfy 1 <= i <= 2 and 1 <= j <= min(1, i) and GCD(i, j) = 1, namely (1, 1) and (2, 1). So T(2,1) = 2.
Array begins:
m\n| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
---+----------------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 | 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
4 | 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
5 | 5 7 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10
6 | 6 8 10 11 12 12 12 12 12 12 12 12 12 12 12 12 12
7 | 7 10 13 15 17 18 18 18 18 18 18 18 18 18 18 18 18
8 | 8 11 15 17 20 21 22 22 22 22 22 22 22 22 22 22 22
9 | 9 13 17 20 24 25 27 28 28 28 28 28 28 28 28 28 28
10 | 10 14 19 22 26 27 30 31 32 32 32 32 32 32 32 32 32
11 | 11 16 22 26 31 33 37 39 41 42 42 42 42 42 42 42 42
12 | 12 17 23 27 33 35 40 42 44 45 46 46 46 46 46 46 46
13 | 13 19 26 31 38 41 47 50 53 55 57 58 58 58 58 58 58
14 | 14 20 28 33 41 44 50 53 57 59 62 63 64 64 64 64 64
15 | 15 22 30 36 44 47 54 58 62 64 68 69 71 72 72 72 72
16 | 16 23 32 38 47 50 58 62 67 69 74 75 78 79 80 80 80
17 | 17 25 35 42 52 56 65 70 76 79 85 87 91 93 95 96 96
-
T(m, n) = sum(i=1, m, sum(j=1, min(n, i), gcd(i, j)==1))
for(d=2,10,for(n=1,d-1,my(m=d-n);print1(T(m,n),", ")))
Showing 1-6 of 6 results.
Comments