A191754 Numerators of a companion to the Bernoulli numbers.
0, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, 41, 41, -589, -589, 8317, 8317, -869807, -869807, 43056421, 43056421, -250158593, -250158593, 67632514765, 67632514765, -1581439548217, -1581439548217
Offset: 0
Examples
The first few rows of the BC(n,m) matrix are: 0, 1/2, 1/2, 1/3, 1/6, 1/15, 1/30, 1/2, 0, -1/6, -1/6, -1/10, -1/30, -1/210, -1/2, -1/6, 0, 1/15, 1/15, 1/35, -1/105, 1/3, 1/6, 1/15, 0, -4/105, -4/105, 0, -1/6, -1/10, -1/15, -4/105, 0, 4/105, 4/105, 1/15, 1/30, 1/35, 4/105, 4/105, 0, -16/231, -1/30, -1/210, 1/105, 0, -4/105, -16/231, 0,
Programs
-
Maple
nmax:=26: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):= T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do BC(n,n):=0: BC(n,n+1) := T(n,n+1) od: for m from 2 to 2*mmax do for n from 0 to m-2 do BC(n,m):=BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to 2*nmax do BC(n,0):=(-1)^(n+1)*BC(0,n) od: for m from 1 to mmax do for n from 2 to 2*nmax do BC(n,m) := BC(n,m-1) + BC(n+1,m-1) od: od: for n from 0 to nmax do seq(BC(n,m),m=0..mmax) od: seq(BC(0,n),n=0..nmax): seq(numer(BC(0,n)),n=0..nmax); # Johannes W. Meijer, Jul 02 2011
-
Mathematica
max = 26; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, max}]; diff = Table[ Differences[bb, n], {n, 1, Ceiling[max/2]}]; dd = Diagonal[diff]; bc[n_, n_] = 0; bc[n_, m_] /; m < n := bc[n, m] = bc[n-1, m+1] - bc[n-1, m]; bc[n_, m_] /; m == n+1 := bc[n, m] = -dd[[n+1]]; bc[n_, m_] /; m > n+1 := bc[n, m] = bc[n, m-1] + bc[n+1, m-1]; Table[bc[0, m], {m, 0, max}] // Numerator (* Jean-François Alcover, Aug 08 2012 *)
Formula
Extensions
Edited by Johannes W. Meijer, Jul 02 2011
Comments