cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191768 G.f. a(x) satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^A000265(n) where A000265(n) = largest odd divisor of n.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 193, 565, 1688, 5136, 15854, 49517, 156191, 496836, 1591924, 5133091, 16643856, 54234349, 177505376, 583272256, 1923482331, 6363842492, 21117432227, 70265970878, 234388421515, 783664894313, 2625748635300
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 68*x^6 + 193*x^7 +...
The g.f. satisfies the following identities:
A(x) = 1 + x*A(x) + x^2*A(x) + x^3*A(x)^3 + x^4*A(x) + x^5*A(x)^5 + x^6*A(x)^3 + x^7*A(x)^7 + x^8*A(x) +...+ x^n*A(x)^A000265(n) +...
A(x) = 1 + x*A(x)/(1-x^2*A(x)^2) + x^2*A(x)/(1-x^4*A(x)^2) + x^4*A(x)/(1-x^8*A(x)^2) + x^8*A(x)/(1-x^16*A(x)^2) +...
		

Crossrefs

Cf. A191769.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(m/2^valuation(m,2))));polcoeff(A,n)}

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=0} x^(2^n)*A(x)/(1 - x^(2*2^n)*A(x)^2).