cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A191768 G.f. a(x) satisfies: A(x) = 1 + Sum_{n>=1} x^n*A(x)^A000265(n) where A000265(n) = largest odd divisor of n.

Original entry on oeis.org

1, 1, 2, 4, 10, 25, 68, 193, 565, 1688, 5136, 15854, 49517, 156191, 496836, 1591924, 5133091, 16643856, 54234349, 177505376, 583272256, 1923482331, 6363842492, 21117432227, 70265970878, 234388421515, 783664894313, 2625748635300
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 25*x^5 + 68*x^6 + 193*x^7 +...
The g.f. satisfies the following identities:
A(x) = 1 + x*A(x) + x^2*A(x) + x^3*A(x)^3 + x^4*A(x) + x^5*A(x)^5 + x^6*A(x)^3 + x^7*A(x)^7 + x^8*A(x) +...+ x^n*A(x)^A000265(n) +...
A(x) = 1 + x*A(x)/(1-x^2*A(x)^2) + x^2*A(x)/(1-x^4*A(x)^2) + x^4*A(x)/(1-x^8*A(x)^2) + x^8*A(x)/(1-x^16*A(x)^2) +...
		

Crossrefs

Cf. A191769.

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(m/2^valuation(m,2))));polcoeff(A,n)}

Formula

G.f. A(x) satisfies: A(x) = 1 + Sum_{n>=0} x^(2^n)*A(x)/(1 - x^(2*2^n)*A(x)^2).

A192483 G.f.: A(x) = Sum_{n>=0} x^n * A(x)^A003188(n) where A003188(n) = n XOR floor(n/2).

Original entry on oeis.org

1, 1, 2, 6, 18, 61, 220, 822, 3157, 12378, 49345, 199441, 815467, 3367153, 14020938, 58811032, 248260925, 1053893607, 4496248445, 19268100048, 82902438819, 357987967157, 1550951132419, 6739554074740, 29366902576469, 128287060703669
Offset: 0

Views

Author

Paul D. Hanna, Jul 01 2011

Keywords

Comments

A003188(n) is the decimal equivalent of the binary Gray code for n; A003188 forms a permutation of the nonnegative integers.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 18*x^4 + 61*x^5 + 220*x^6 +...
The g.f. A(x) satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^2 + x^4*A(x)^6 + x^5*A(x)^7 + x^6*A(x)^5 + x^7*A(x)^4 + x^8*A(x)^12 + x^9*A(x)^13 + x^10*A(x)^15 +...
where the powers of A(x) are given by A003188, which begins:
[0,1,3,2,6,7,5,4,12,13,15,14,10,11,9,8,24,25,27,26,30,31,29,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0,n,x^m*(A+x*O(x^n))^bitxor(m,m\2)));polcoeff(A,n)}
Showing 1-2 of 2 results.