cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191774 Lim f(f(...f(n)...)) where f(n) is the Farey fractal sequence, A131967.

Original entry on oeis.org

1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2011

Keywords

Comments

Suppose that f(1), f(2), f(3),... is a fractal sequence (a sequence which contains itself as a proper subsequence, such as 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, ...; if the first occurrence of each n is deleted, the remaining sequence is identical to the original; see the Wikipedia article for a rigorous definition). Then for each n>=1, the limit L(n) of composites f(f(f...f(n)...)) exists and is one of the numbers in the set {k : f(k)=k}. Thus, if f(2)>2, then L(n)=1 for all n; if f(2)=2 and f(3)>3, then L(n) is 1 or 2 for all n. Examples: A020903, A191770, A191774

Examples

			Write the counting numbers and A131967 like this:
1..2..3..4..5..6..7..8..9..10..11..12..13..14..15..
1..2..1..3..2..1..4..3..5..2...1...6...4...3...5...
It is then easy to check composites:
1->1, 2->2, 3->1, 4->3->1, 5->2, 6->1, 7->4->3->1,...
		

Crossrefs

Programs

  • Mathematica
    Farey[n_] := Select[Union@Flatten@Outer[Divide, Range[n + 1] - 1, Range[n]], # <= 1 &];
    newpos[n_] := Module[{length = Total@Array[EulerPhi, n] + 1, f1 = Farey[n], f2 = Farey[n - 1], to},
       to = Complement[Range[length], Flatten[Position[f1, #] & /@ f2]];
       ReplacePart[Array[0 &, length],
        Inner[Rule, to, Range[length - Length[to] + 1, length], List]]];
    a[n_] := Flatten@Table[Fold[ReplacePart[Array[newpos, i][[#2 + 1]], Inner[Rule, Flatten@Position[Array[newpos, i][[#2 + 1]], 0], #1, List]] &, Array[newpos, i][[1]], Range[i - 1]], {i, n}];
    t = a[12]; f[n_] := Part[t, n];
    Table[f[n], {n, 1, 100}]          (* A131967 *)
    h[n_] := Nest[f, n, 50]
    t = Table[h[n], {n, 1, 200}]      (* A191774 *)
    s = Flatten[Position[t, 1]]       (* A191775 *)
    s = Flatten[Position[t, 2]]       (* A191776 *)