cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191794 Number of length n left factors of Dyck paths having no UUDD's; here U=(1,1) and D=(1,-1).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 23, 41, 69, 124, 212, 383, 662, 1200, 2091, 3799, 6661, 12122, 21359, 38919, 68850, 125578, 222892, 406865, 724175, 1322772, 2360010, 4313155, 7711148, 14099524, 25252819, 46192483, 82863807, 151628090, 272385447, 498578411, 896774552
Offset: 0

Views

Author

Emeric Deutsch, Jun 18 2011

Keywords

Examples

			a(4)=5 because we have UDUU, UDUD, UUDU, UUUD, and UUUU, where U=(1,1) and D=(1,-1) (the path UUDD does not qualify).
		

Crossrefs

Cf. A191793.

Programs

  • Maple
    g := 2/(1-2*z+z^4+sqrt(1-4*z^2+2*z^4+z^8)): gser := series(g, z = 0, 42): seq(coeff(gser, z, n), n = 0 .. 37);
  • Mathematica
    CoefficientList[Series[2/(1-2x+x^4+Sqrt[1-4x^2+2x^4+x^8]), {x,0,40}], x] (* Harvey P. Dale, Jun 19 2011 *)

Formula

a(n) = A191793(n,0).
G.f.: g(z) = 2/(1-2*z+z^4+sqrt(1-4*z^2+2*z^4+z^8)).
D-finite with recurrence (n+1)*a(n) +2*(-1)*a(n-1) +4*(-n+1)*a(n-2) +2*(n-3)*a(n-4) +6*a(n-5) +(n-7)*a(n-8)=0. - R. J. Mathar, Jul 22 2022