cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A191796 Number of DUU's in all length n left factors of Dyck paths; here U=(1,1) and D=(1,-1).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 9, 21, 52, 113, 261, 550, 1226, 2542, 5546, 11389, 24494, 49989, 106413, 216258, 456826, 925586, 1943550, 3929090, 8210896, 16571018, 34494114, 69523116, 144246532, 290424604, 600907508, 1208835421, 2495229602, 5016122029, 10332784253, 20759855626
Offset: 0

Views

Author

Emeric Deutsch, Jun 18 2011

Keywords

Examples

			a(4)=1 because in UDUD, U(DUU), UUDD, UUDU, UUUD, and UUUU the  total number of DUUs is 0 + 1 + 0 + 0 +0 + 0 = 1 (shown between parentheses).
		

Crossrefs

Cf. A191795.

Programs

  • Maple
    g := (((1-3*z^2-z^3)*sqrt(1-4*z^2)-1+5*z^2+z^3-4*z^4)*1/2)/(z*(1-2*z)*sqrt(1-4*z^2)): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 0 .. 35);
  • Mathematica
    CoefficientList[Series[(((1-3*x^2-x^3)*Sqrt[1-4*x^2]-1+5*x^2+x^3-4*x^4)/2) / (x*(1-2*x)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)
  • PARI
    z='z+O('z^50); concat([0,0,0,0], Vec(((1-3*z^2-z^3)*sqrt(1-4*z^2) -1+5*z^2+z^3-4*z^4)/(2*z*(1-2*z)*sqrt(1-4*z^2)))) \\ G. C. Greubel, Mar 28 2017

Formula

a(n) = Sum_{k>=0} k*A191795(n,k).
G.f.: ((1-3*z^2-z^3)*sqrt(1-4*z^2) -1+5*z^2+z^3-4*z^4)/(2*z*(1-2*z)*sqrt(1-4*z^2)).
a(n) ~ 2^(n-5/2)*sqrt(n)/sqrt(Pi) * (1 + sqrt(Pi)/sqrt(2*n)). - Vaclav Kotesovec, Mar 21 2014
Conjecture: -(n+1)*(2527*n^2+15963*n-146560)*a(n) +(-2527*n^3+68000*n^2-231053*n-293120)*a(n-1) +2*(12635*n^3+906*n^2-429395*n+746484)*a(n-2) +4*(2527*n^3-70527*n^2+316742*n-316524)*a(n-3) -24*(n-5)*(2527*n^2-232*n-28664)*a(n-4)=0. - R. J. Mathar, Jun 14 2016
Showing 1-1 of 1 results.