cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191801 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(3*n^2).

Original entry on oeis.org

1, 1, 4, 28, 251, 2573, 28813, 343833, 4308210, 56154805, 756731761, 10499096630, 149551069156, 2182935186698, 32613646656198, 498420592612153, 7790219357236805, 124545937719356873, 2037614647316548891, 34134979366157116560
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 251*x^4 + 2573*x^5 + 28813*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^3 + x^2*A(x)^12 + x^3*A(x)^27 + x^4*A(x)^48 +...+ x^n*A(x)^(3*n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(3*m^2)));polcoeff(A,n)}

Formula

Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(3*n)*Product_{k=1..n} (1-x*A^(12*k-9))/(1-x*A^(12*k-3));
(2) A = 1/(1- A^3*x/(1- A^3*(A^6-1)*x/(1- A^15*x/(1- A^9*(A^12-1)*x/(1- A^27*x/(1- A^15*(A^18-1)*x/(1- A^39*x/(1- A^21*(A^24-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.