cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A191803 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(5*n^2).

Original entry on oeis.org

1, 1, 6, 61, 791, 11701, 188462, 3225915, 57840755, 1076423857, 20666351126, 407645638428, 8237858879315, 170229866493435, 3592746391559133, 77393340642273491, 1701286171473636404, 38169860244429063080
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 61*x^3 + 791*x^4 + 11701*x^5 + 188462*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^5 + x^2*A(x)^20 + x^3*A(x)^45 + x^4*A(x)^80 +...+ x^n*A(x)^(5*n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(5*m^2)));polcoeff(A,n)}

Formula

Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(5*n)*Product_{k=1..n} (1-x*A^(20*k-15))/(1-x*A^(20*k-5));
(2) A = 1/(1- A^5*x/(1- A^5*(A^10-1)*x/(1- A^25*x/(1- A^15*(A^20-1)*x/(1- A^45*x/(1- A^25*(A^30-1)*x/(1- A^65*x/(1- A^35*(A^40-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.

A191800 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(2*n^2).

Original entry on oeis.org

1, 1, 3, 16, 109, 851, 7275, 66393, 637239, 6371848, 65961782, 703953599, 7722738071, 86924392498, 1002603956938, 11842465020207, 143208130730229, 1773099186411938, 22483740028949531, 292129222113885503, 3891268435685371911
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 109*x^4 + 851*x^5 + 7275*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^2 + x^2*A(x)^8 + x^3*A(x)^18 + x^4*A(x)^32 +...+ x^n*A(x)^(2*n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(2*m^2)));polcoeff(A,n)}

Formula

Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(2*n)*Product_{k=1..n} (1-x*A^(8*k-6))/(1-x*A^(8*k-2));
(2) A = 1/(1- A^2*x/(1- A^2*(A^4-1)*x/(1- A^10*x/(1- A^6*(A^8-1)*x/(1- A^18*x/(1- A^10*(A^12-1)*x/(1- A^26*x/(1- A^14*(A^16-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.

A191801 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(3*n^2).

Original entry on oeis.org

1, 1, 4, 28, 251, 2573, 28813, 343833, 4308210, 56154805, 756731761, 10499096630, 149551069156, 2182935186698, 32613646656198, 498420592612153, 7790219357236805, 124545937719356873, 2037614647316548891, 34134979366157116560
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 251*x^4 + 2573*x^5 + 28813*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^3 + x^2*A(x)^12 + x^3*A(x)^27 + x^4*A(x)^48 +...+ x^n*A(x)^(3*n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(3*m^2)));polcoeff(A,n)}

Formula

Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(3*n)*Product_{k=1..n} (1-x*A^(12*k-9))/(1-x*A^(12*k-3));
(2) A = 1/(1- A^3*x/(1- A^3*(A^6-1)*x/(1- A^15*x/(1- A^9*(A^12-1)*x/(1- A^27*x/(1- A^15*(A^18-1)*x/(1- A^39*x/(1- A^21*(A^24-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.

A191804 G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^(6*n^2).

Original entry on oeis.org

1, 1, 7, 82, 1221, 20718, 382315, 7489683, 153551487, 3264643144, 71545452946, 1609541143713, 37065029428453, 872037022019930, 20935244357544798, 512498682139660135, 12790021472251565047, 325439165493879484025
Offset: 0

Views

Author

Paul D. Hanna, Jun 16 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 7*x^2 + 82*x^3 + 1221*x^4 + 20718*x^5 + 382315*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x)^6 + x^2*A(x)^24 + x^3*A(x)^54 + x^4*A(x)^96 +...+ x^n*A(x)^(6*n^2) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(6*m^2)));polcoeff(A,n)}

Formula

Let A = g.f. A(x), then A satisfies:
(1) A = Sum_{n>=0} x^n*A^(6*n)*Product_{k=1..n} (1-x*A^(24*k-18))/(1-x*A^(24*k-6));
(2) A = 1/(1- A^6*x/(1- A^6*(A^12-1)*x/(1- A^30*x/(1- A^18*(A^24-1)*x/(1- A^54*x/(1- A^30*(A^36-1)*x/(1- A^78*x/(1- A^42*(A^48-1)*x/(1- ...))))))))) (continued fraction);
due to a q-series identity and an identity of a partial elliptic theta function, respectively.
Showing 1-4 of 4 results.