A191809
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^binomial(n+2,3).
Original entry on oeis.org
1, 1, 2, 7, 32, 174, 1071, 7281, 53943, 432555, 3743146, 34934853, 351853883, 3827477399, 44985837602, 570985992828, 7814212692498, 115024461077654, 1815588345261996, 30628743324667923, 550414603283527315, 10503650627005928698
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 32*x^4 + 174*x^5 + 1071*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^10 + x^4*A(x)^20 + x^5*A(x)^35 + x^6*A(x)^56 + x^7*A(x)^84 +...+ x^n*A(x)^(n*(n+1)*(n+2)/3!) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^(m*(m+1)*(m+2)/3!)));polcoeff(A,n)}
A191810
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^binomial(n+3,4).
Original entry on oeis.org
1, 1, 2, 8, 44, 305, 2521, 24389, 273990, 3569531, 53944055, 944215131, 19065096323, 441174226355, 11609627641798, 344702951590401, 11463058468995522, 424180616752269732, 17366249924363207650, 782666399665891947949
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 44*x^4 + 305*x^5 + 2521*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^5 + x^3*A(x)^15 + x^4*A(x)^35 + x^5*A(x)^70 + x^6*A(x)^126 + x^7*A(x)^210 +...+ x^n*A(x)^(n*(n+1)*(n+2)*(n+3)/4!) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^binomial(m+3,4)));polcoeff(A,n)}
A191811
G.f. satisfies: A(x) = Sum_{n>=0} x^n*A(x)^binomial(n+4,5).
Original entry on oeis.org
1, 1, 2, 9, 58, 501, 5452, 74211, 1257414, 26480393, 689598502, 21957924255, 844532153323, 38719749230469, 2091808065954023, 131835936103587004, 9607988537163939224, 803620426590302536069, 76622443259122023510169
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 58*x^4 + 501*x^5 + 5452*x^6 +...
where the g.f. satisfies:
A(x) = 1 + x*A(x) + x^2*A(x)^6 + x^3*A(x)^21 + x^4*A(x)^56 + x^5*A(x)^126 + x^6*A(x)^252 + x^7*A(x)^462 +...+ x^n*A(x)^(n*(n+1)*(n+2)*(n+3)*(n+4)/5!) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=1+sum(m=1,n,x^m*(A+x*O(x^n))^binomial(m+4,5)));polcoeff(A,n)}
Showing 1-3 of 3 results.