cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191831 a(n) = Sum_{i+j=n, i,j >= 1} tau(i)*sigma(j), where tau() = A000005(), sigma() = A000203().

Original entry on oeis.org

0, 1, 5, 12, 24, 39, 60, 87, 113, 158, 189, 249, 286, 372, 402, 516, 545, 696, 709, 886, 912, 1125, 1110, 1401, 1348, 1674, 1654, 1992, 1906, 2390, 2226, 2735, 2648, 3141, 2926, 3705, 3346, 4069, 3898, 4604, 4223, 5282, 4707, 5757, 5426, 6326, 5754, 7269, 6324, 7669, 7230, 8468, 7556, 9456, 8240, 10018, 9320, 10748, 9621, 12246
Offset: 1

Views

Author

N. J. A. Sloane, Jun 17 2011

Keywords

Comments

This is Andrews's D_{0,1}(n).
From Omar E. Pol, Dec 08 2021: (Start)
Zero together with the convolution of A000005 and A000203.
Zero together with the convolution of A341062 and A024916.
Zero together with the convolution of the nonzero terms of A006218 and A340793.
a(n) is also the volume of a symmetric polycube which belongs to the family of symmetric polycubes that represent the convolution of A000203 with any other integer sequence, n >= 1. (End)

Crossrefs

Programs

  • Maple
    with(numtheory); D01:=n->add(tau(j)*sigma(n-j),j=1..n-1);
    [seq(D01(n),n=1..60)];
  • Mathematica
    Table[Sum[DivisorSigma[0, j] DivisorSigma[1, n - j], {j, n - 1}], {n, 60}] (* Michael De Vlieger, Jan 01 2017 *)
  • PARI
    a(n)=sum(i=1,n-1,numdiv(i)*sigma(n-i)) \\ Charles R Greathouse IV, Feb 19 2013

Formula

G.f.: (Sum_{k>=1} x^k/(1 - x^k))*(Sum_{k>=1} k*x^k/(1 - x^k)). - Ilya Gutkovskiy, Jan 01 2017