A191834 Numbers n not divisible by 2 or 3 such that k^k == k+1 (mod n) has no nonzero solutions.
205, 301, 455, 1015, 1025, 1085, 1435, 1505, 2107, 2255, 2275, 2485, 2665, 3185, 3311, 3485, 3895, 3913, 4715, 4823, 5005, 5075, 5117, 5125, 5425, 5467, 5719, 5915, 5945, 6355, 6923, 7105, 7175, 7525, 7585, 7595, 7735, 8405, 8645, 8729, 8815, 9331, 9635, 10045, 10465, 10535, 10865, 11137, 11165, 11275, 11375, 11935, 12095
Offset: 1
Keywords
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..150
Programs
-
Mathematica
A191833[n_] := (For[m = 2*n + 2*Floor[n/2] - 1; k = 1, k <= m^2, k++, If[PowerMod[k, k, m] == Mod[k+1, m], Return[{k, m}]]]; {0, m}); Reap[For[j = 1; n = 1, n <= 5000, n++, {z, m} = A191833[n]; If[z == 0, Print["a(", j++, ") = ", m]; Sow[m]]]][[2, 1]] (* Jean-François Alcover, Sep 13 2013 *)
Extensions
Terms a(30) onward from Max Alekseyev, Sep 10 2013
Comments