A191838 Ordered sums f+2*g, where f and g are positive Fibonacci numbers (A000045).
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 31, 34, 36, 37, 38, 39, 40, 43, 44, 45, 47, 50, 55, 57, 59, 60, 61, 63, 65, 69, 70, 71, 73, 76, 81, 89, 91, 93, 95, 97, 99, 102, 105, 111, 112, 113, 115, 118, 123, 131, 144
Offset: 1
Keywords
Programs
-
Mathematica
c = 1; d = 2; f[n_] := Fibonacci[n]; g[n_] := c*f[n]; h[n_] := d*f[n]; t[i_, j_] := h[i] + g[j]; u = Table[t[i, j], {i, 1, 20}, {j, 1, 20}]; v = Union[Flatten[u ]] (* A191838 *) t1[i_, j_] := If[g[i] - h[j] > 0, g[i] - h[j], 0] u1 = Table[t1[i, j], {i, 1, 20}, {j, 1, 20}]; v1 = Union[Flatten[u1 ]] (* A191839: f(i)-2*f(j) *) g1[n_] := d*f[n]; h1[n_] := c*f[n]; t2[i_, j_] := If[g1[i] - h1[j] > 0, g1[i] - h1[j], 0] u2 = Table[t2[i, j], {i, 1, 20}, {j, 1, 20}]; v2 = Union[Flatten[u2 ]] (* A191840: 2*f(i)-f(j) *) v3 = Union[v1, v2] (* A191841 *) With[{nn=20},Take[Union[#[[1]]+2#[[2]]&/@Tuples[Fibonacci[ Range[20]], 2]],4nn]] (* Harvey P. Dale, Jun 08 2015 *)