cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A191854 First factor in happy factorization of n-th rectangular number.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 7, 1, 2, 4, 3, 2, 1, 7, 1, 5, 11, 17, 1, 2, 3, 1, 6, 11, 5, 23, 1, 4, 1, 2, 11, 7, 3, 1, 15, 1, 31, 1, 2, 4, 23, 5, 8, 1, 1, 19, 7, 26, 1, 3, 1, 2, 1, 9, 23, 3, 47, 19, 1, 49, 1, 2, 5, 1, 27, 1, 10, 3, 7, 1, 2, 4, 9, 2, 1, 31, 1, 14, 3, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 18 2011

Keywords

Comments

a(n) = A007966(A007969(n)) = A007969(n) / A191855(n);
(a(n), A191855(n)) is a 1-happy couple;
notation: B in the Conway link.

Crossrefs

Programs

  • Haskell
    a191854 = a007966 . a007969  -- Reinhard Zumkeller, Oct 11 2015
  • Mathematica
    r[b_, c_] := (red = Reduce[x>0 && y>0 && b*x^2 + 1 == c*y^2, {x, y}, Integers] /. C[1] -> 1 // Simplify; If[Head[red] === Or, First[red], red]); f[128] = {}(* to speed up *); f[n_] := f[n] = If[IntegerQ[Sqrt[n]], {}, Do[c = n/b; If[(r0 = r[b, c]) =!= False, {x0, y0} = {x, y} /. ToRules[r0]; Return[{b, c, x0, y0}]], {b, Divisors[n] // Most}]]; A191854 = Reap[Table[Print[n, " ", f[n]]; If[f[n] != {} && f[n] =!= Null, Sow[f[n][[1]]]], {n, 1, 130}]][[2, 1]] (* Jean-François Alcover, Sep 18 2015 *)

Extensions

Wrong formula removed (thanks to Wolfdieter Lang, who pointed this out) by Reinhard Zumkeller, Oct 11 2015