A191905 Composite deficient numbers k such that (product of proper divisors of k) mod (sum of proper divisors of k) is a prime number.
4, 9, 10, 25, 33, 39, 49, 57, 91, 93, 98, 105, 111, 119, 121, 145, 155, 169, 183, 185, 187, 189, 201, 205, 209, 215, 225, 235, 237, 242, 245, 265, 289, 291, 299, 305, 327, 335, 351, 355, 361, 371, 403, 413, 415, 417, 425, 427, 437, 469, 471, 475, 485, 493, 497, 515, 527, 529, 535, 543, 549, 553
Offset: 1
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
isA191905 := proc(n) if not isA125493(n) then false; else isprime( A191906(n)) ; end if; end proc: for n from 3 to 710 do if isA191905(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 27 2011
-
Mathematica
fQ[n_]:=Module[{pd=Most[Divisors[n]]},!PerfectNumberQ[n]&&CompositeQ[n] && DivisorSigma[ 1,n]<2n&& PrimeQ[Mod[Times@@pd,Total[pd]]]] Select[Range[2,600],fQ] (* Harvey P. Dale, Jul 14 2024 *)
Extensions
Corrected by R. J. Mathar, Jun 27 2011